Qattara Depression and Its Hydropower Potential

Abstract

The Qattara Depression in Egypt has been suggested to be used for hydropower production. This paper investigates the possibility of having a Hydropower plant in this location to solve the current energy problem in the region, by providing the most updated results that would be used in such a project compared to previous studies. Hydrological elements affecting the water balance of the Qattara Depression region are studied, as by predicting the level of the water with time, the nature of the operation of the station can be chosen efficiently. Salinity concentration, evaporation rate of the formed lake, and the water channel formed that leads to the lake, and inward and outward seepage are all factors that had either been neglected in previous studies or not studied in the level of detail necessary for an accurate estimation of the lifetime, energy and economic feasibility of the plant. Meteorological data obtained from weather stations surrounding the region were used in the calculations. Also we needed information about the nature of the region’s soil and the hydraulic conductivity and studied the surrounding aquifers to obtain the best estimates when modelling the seepage values along with the years. The detailed calculation of the seepage and salinity have never been done and incorporated in the results making the results in this paper the most updated results. The results showed the lifetime of the Qattara Depression and the increase in the level of the water level with time.



Author Information
Aly El Shafei, American University in Cairo, Egypt
Mohamed Amr Serag El Din, American University in Cairo, Egypt

Paper Information
Conference: IICSEEHawaii2018
Stream: Clean and Affordable Energy

This paper is part of the IICSEEHawaii2018 Conference Proceedings (View)
Full Paper
View / Download the full paper in a new tab/window


Comments & Feedback

Place a comment using your LinkedIn profile

Comments

Share on activity feed

Powered by WP LinkPress

Share this Research

Posted by James Alexander Gordon