
AI Collaboration for Programming Education Beyond Computer Science

Lauren Miller, The University of Queensland, Australia

Felix Egger, The University of Queensland, Australia

Aneesha Bakharia, The University of Queensland, Australia

The Paris Conference on Education 2025

Official Conference Proceedings

Abstract

Programming education across STEM disciplines faces significant institutional and

pedagogical barriers, including student identity conflicts, syntax knowledge gaps, and limited

faculty support for interdisciplinary work. This integrative literature review examines how

generative artificial intelligence (GenAI) tools can address cross-disciplinary programming

barriers while meeting diverse disciplinary learning needs. From experimental research

(2018-2025), we identified key challenges that particularly affect non-CS students, including

programming self-efficacy barriers and overwhelming syntax requirements. Our findings

reveal that GenAI tools function as sophisticated low-code programming environments,

significantly increasing programming interest in students by enabling natural language

interactions and reducing debugging anxiety. However, concerns about critical thinking

erosion and “one-shot prompting” behaviors highlight the need for scaffolded implementation

approaches. Our teaching approach uses discipline-specific content generation, integrated

focus on GenAI alongside coding skills, and structured prompting exercises that develop

iterative refinement skills. Students begin viewing programming as an important tool rather

than separate technical skill, with reduced debugging anxiety and improved computational

thinking development. This research emphasizes that while GenAI tools can democratize

programming access across disciplines, institutional support, staff collaboration and

thoughtful pedagogical integration with metacognitive scaffolding is essential for maintaining

learning quality and developing critical thinking alongside technical competencies.

Keywords: programming, AI, higher education, curriculum

iafor
The International Academic Forum

www.iafor.org

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 843

Introduction

Despite programming's expanding importance across STEM fields, the integration of

programming education across tertiary disciplines faces significant institutional and

pedagogical barriers extending beyond software limitations. Siloed disciplines tend to

regulate interdisciplinary activity, to “ensure that interdisciplinary efforts tend to exist on the

margins of established disciplines” (Holley, 2017) and sustain a pedagogical status quo

(Holley, 2009). Faculties developing integrated programming courses “in spite of, not

because of, departmental and disciplinary priorities,” face challenges due to a lack of time for

staff to support learning programming in different disciplines (Holley, 2017). Early-career

faculty are especially vulnerable since they are at risk of scrutiny from their senior colleagues

for innovating in their teaching methods despite appreciating the necessity of

interdisciplinary work (Holley, 2017). Generative artificial intelligence (GenAI) tools present

both opportunities and challenges for closing the gap for cross-disciplinary programming

education. While GenAI-assisted programming has been extensively researched in computer

science teaching contexts, it is important to understand how its implementation varies across

disciplines.

Literature Review

This study employed an integrative literature review methodology following Whittemore and

Knafl's (2005) framework, comprising five key stages: problem identification, literature

search, data evaluation, data analysis, and presentation of findings. A literature search was

conducted in major databases including ACM and Proquest to identify experimental research

published 2018 - 2025 into the integration of GenAI into coursework in tertiary programming

education. Peer reviewed journal articles and conference papers were filtered for relevance

and key themes were identified. These findings were synthesized to answer the research

question: How can GenAI address cross-disciplinary programming barriers in tertiary

education while meeting the learning needs of the respective disciplines?

Cross-Disciplinary Programming Challenges

“I’m not a Computer Science Student”: The Programming Identity Conflict

Students in non-computer science disciplines often experience programming identity conflict,

where they resist programming not due to intellectual incapacity but because they do not see

themselves as “programmers.” This barrier is compounded by cultural stereotypes positioning

computer science as primarily masculine and technically exclusive, creating additional

obstacles for traditionally underrepresented groups (MacNeil et al., 2023).

GenAI tools can function as sophisticated low-code programming environments that enable

software development without extensive syntax knowledge, potentially democratizing access

to problem-solving with programming. However, simply providing access to GenAI tools is

insufficient; students need scaffolded experiences that help them recognize how

programming with GenAI serves as a tool for discipline problems.

Programming Self-Efficacy Rises With the Introduction of GenAI Programming Tools

Students entering non-computer science programs may lack foundational programming

literacy, creating additional barriers when encountering programming requirements. The fear

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 844

of debugging and technical troubleshooting particularly challenges cross-disciplinary

programming education, as students can be frustrated by the amount of work required for

debugging even when they have good programming skills (Fitzgerald et al., 2008).

Research demonstrates that GenAI significantly increases interest in programming in up to

91% of students (Llerena-Izquierdo et al., 2024). The conversational nature of GenAI tools

transforms programming education by enabling natural language exchanges, where students

can “ask the problem with the AI tool and can get instant feedback and solve the problem”

(Yilmaz & Karaoglan Yilmaz, 2023).

The Syntax Knowledge Barrier Is Lowered With the Introduction of GenAI Tools

The barrier created by learning new programming languages represents a significant

challenge for students whose primary focus lies in other disciplines. Students may be

motivated to learn the theory behind an algorithm but can find stringent syntax requirements

overwhelming and demotivating when combined with existing coursework demands (Lai et

al., 2022), although this can depend on students’ attitude and how the programming is

integrated into coursework (Ditta & Woodward, 2024).

As a solution, GenAI can generate code from natural language descriptions (Schlegel et al.,

2019), enabling learners to concentrate on the problem-solving aspects of computational

thinking (Song et al., 2024). This natural language interface enables students to express

programming intentions in their own vocabulary before receiving AI-generated code

suggestions.

However, as Prather et al. (2024) noted, careful integration is needed as GenAI tools may not

improve metacognition and could widen gaps between struggling and excelling students.

Development of code products should always involve collaboration where the student is “pair

programming” with the GenAI agent (Imai, 2022).

Figure 1

The Transformation of Cross-Disciplinary Programming Education Through GenAI

Integration

GenAI for Programming Pedagogy

Courses With AI-Assisted Programming Report Positive Learning Outcomes

The systematic review reveals predominantly positive learning outcomes from GenAI

integration. AI-assisted programming tools significantly improve learning outcomes and

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 845

academic performance by enhancing students' “computational thinking skills, programming

self-efficacy, and course motivation” (Yilmaz & Karaoglan Yilmaz, 2023). Students using

ChatGPT outperformed those using traditional programming help resources like online

forums such as Stack Overflow (Park & Kim, 2025).

GenAI tools enhance engagement through multiple mechanisms. Enhanced compiler

messages reduce debugging time (Denny et al., 2020), while hints from a ChatGPT model

help resolve compiler errors while reducing frustration (Pankiewicz & Baker, 2024). The

majority of students found AI-generated code explanations helpful, though engagement

varied depending on complexity and explanation type (MacNeil et al., 2023).

Concerns About Critical Thinking Capabilities Were Raised

The integration of GenAI tools raises fundamental concerns about learning outcomes and

pedagogical effectiveness, specifically the risk those tools eroding critical thinking skills and

masking students' lack of genuine comprehension (Rahman & Watanobe, 2023). Reeves et al.

(2023) warn that students can rely too much on GenAI “without properly understanding the

underlying concepts.”

The emergence of “one-shot prompting” behaviors represents a particular concern, where

students submit initial prompts without iterative refinement or critical evaluation of outputs.

Ahmed and Srivastava (2020) found that performance improvements seen with the use of

GenAI were not observed in exams, explaining the improvement to be “primarily logistical

rather than conceptual” and not increasing students’ learning as intended.

Computational Thinking Development

The development of computational thinking skills, including problem decomposition, pattern

recognition, abstraction, and algorithmic thinking (Wing, 2010), represents a critical bridge

between disciplinary knowledge and programming competence. Students should develop the

capability to decompose problems into logical steps and code those steps appropriately

(Wilson & Nishimoto, 2024).

Large language models (GenAI tools) can assist by helping students explain code, test

implementations, and decompose large problems into smaller functions (Vadaparty et al.,

2024). However, decomposition should be performed in collaboration with GenAI, since it

lacks the ability to respond to complex problems effectively (Ahmed et al., 2024).

Implementation Framework: The University of Queensland Model

Addressing Research Gaps

To address the research gap of integrating GenAI into cross-disciplinary programming

education, our team at the University of Queensland assembled academics from computer

science, engineering, architecture, humanities, and business, with funding from a Teaching

Innovation Grant. This diversity of disciplines proved essential for understanding common

difficulties students across disciplines experience when learning to use programming in their

discipline.

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 846

The team identified that discipline context is critical for student engagement. Rather than

teaching programming abstractly, we developed a workflow that generates a teaching module

(“Learning programming with GenAI”) that, with the help of GenAI, generates discipline-

specific content, ensuring that, for example, psychology students work with psychological

research scenarios, business students engage with business analytics problems, and

architecture students explore digital architectural design challenges.

Module Design Principles

The module emphasizes teaching GenAI concepts (prompting techniques, responsible AI use)

alongside coding concepts (programming logic, debugging, AI-assisted help-seeking). This

dual focus addresses concerns about critical thinking while building practical GenAI

interaction competencies. The self-paced learning approach incorporates interactive elements

and GenAI tutor feedback, providing personalized support that approximates 1:1 teacher-to-

student ratios (Liu et al., 2024).

Pilot testing in Chemical Engineering with planned implementation in Digital

Communications and Architecture has revealed key insights: students begin seeing

programming as a tool for disciplinary inquiry rather than separate technical skill, GenAI-

assisted approaches greatly reduce anxiety around debugging, and structured prompting

exercises help students move beyond one-shot interactions to develop iterative refinement

skills.

Pedagogical Recommendations

Scaffolded Critical Evaluation

Effective implementation requires frameworks encouraging students to critically evaluate AI-

generated content. Wu et al. (2025) advocate for approaches that “foster the development of

HOTS [Higher Order Thinking Skills] and self-directed learning skills while leveraging the

benefits of GenAI-assisted learning.” Students must develop the ability to “ask the right

questions” of GenAI for effective problem-solving support (Ellis et al., 2024).

Institutional Support

Successful integration requires institutional commitment to addressing the structural barriers

identified in cross-disciplinary work. Some institutions have modified policies, with

examples including explicit statements that faculty should “receive full credit for their

contributions to interdisciplinary and/or collaborative scholarly projects” (Holley, 2017).

GenAI Collaboration

The integration of GenAI into programming education should be thoughtful and

pedagogically intentional, guiding students to reflect and learn rather than simply delivering

content or providing solutions for assessment questions (Liu et al., 2024). Educational

institutions should adopt proactive stances toward GenAI-based tools, ensuring they serve as

supplemental teaching aids rather than replacements for fundamental instruction (Ahmed et

al., 2024).

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 847

Future Research Directions

The systematic review reveals critical gaps requiring investigation. With most research

focusing on computer science contexts, there is an urgent need for studies examining GenAI-

assisted programming education in other disciplines where programming serves instrumental

rather than intrinsic purposes. Research should examine long-term learning outcomes beyond

immediate performance improvements, investigating whether GenAI-assisted programming

education leads to sustained computational thinking abilities. Additionally, traditional

programming assessments may be inadequate for evaluating GenAI-assisted learning,

requiring new approaches that measure students' ability to collaborate effectively with GenAI

tools while maintaining conceptual understanding.

Conclusion

In conclusion, GenAI tools in cross-disciplinary programming education can make coding

more accessible to students from different academic backgrounds, but simply providing these

tools without any metacognitive scaffolding is not enough. Successful integration of GenAI

tools requires pedagogical approaches that build student confidence, develop critical thinking,

and connect programming to students' own fields of study, helping overcome the

misconception that programming is not relevant to their discipline. However, universities

face major barriers to implementing these changes, including faculty resistance and teaching

staff concerned about career advancement when pursuing interdisciplinary work. Overcoming

these challenges needs institutional support, updated evaluation systems, and recognition of

the extra effort required to develop integrated courses. Our approach at the University of

Queensland shows promise for a scalable learning module solution that maintains teaching

quality while reducing barriers. As GenAI tools improve, collaboration between computer

science and other faculty will be crucial for creating more inclusive and effective

programming education.

Acknowledgements

Authors would like to acknowledge the useful conversations of the Teaching Innovation

Grant team, including As/Prof Hassan Khosravi, Prof Jason Tangen, Dr Leah Henrickson, Dr

Dan Luo, Dr Ida Asadi Someh, and Kim Henville.

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process

GenAI was used in the literature review process to support the identification (Research

Rabbit) and narrowing down literature from thousands of search results (a collaborative

process involving OpenAI ChatGPT to assess abstracts). GenAI was also used in the planning

of this paper (Anthropic Claude).

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 848

References

Ahmed, M., Dras, M., & Richards, D. (2024). Investigating the effectiveness of ChatGPT in

programming education: A controlled study. Computers & Education, 198, 104751.

Ahmed, S., & Srivastava, N. (2020). Automated feedback tools in programming education:

Performance and learning outcomes. Journal of Educational Technology Systems,

48(3), 287–305.

Bejarano, G., Cukurova, M., & Spikol, D. (2025). AI-Lab: A framework for responsible AI

integration in programming education. Computers & Education, 205, 104892.

Denny, P., Luxton-Reilly, A., & Tempero, E. (2020). Enhancing compiler error messages for

novice programmers. Proceedings of the 51st ACM Technical Symposium on

Computer Science Education, 832–838.

Ditta, A. S., & Woodward, A. M. (2024). Technology or tradition? A comparison of students’

statistical reasoning after being taught with R programming versus hand calculations.

Scholarship of Teaching and Learning in Psychology, 10(4), 620–625.

https://doi.org/10.1037/stl0000327

Ellis, J., Hao, Q., & Denny, P. (2024). Cross-disciplinary computational thinking: Asking the

right questions of generative AI. Proceedings of the 2024 ACM Conference on

Innovation and Technology in Computer Science Education, 78–84.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional study

of novice debuggers. Computer Science Education, 18(2), 93–116.

https://doi.org/10.1080/08993400802114508

Holley, K. A. (2009). Understanding interdisciplinary challenges and opportunities in higher

education. ASHE Higher Education Report, 35(2), 1–131.

Holley, K. A. (2017). Interdisciplinary curriculum and learning in higher education. Oxford

Research Encyclopedia of Education.

https://doi.org/10.1093/acrefore/9780190264093.013.138

Imai, Y. (2022). Pair programming with AI: A new paradigm for programming education.

Proceedings of the 2022 ACM Conference on International Computing Education

Research, 156–167.

Lai, C.-H., Chen, Y.-K., Wang, Y., & Liao, H.-C. (2022). The Study of Learning Computer

Programming for Students with Medical Fields of Specification—An Analysis via

Structural Equation Modeling. International Journal of Environmental Research and

Public Health, 19(10), 6005. https://doi.org/10.3390/ijerph19106005

Liu, M., Denny, P., & Giacaman, N. (2024). Designing AI tutors for programming education:

Lessons from CS50's implementation. Proceedings of the 55th ACM Technical

Symposium on Computer Science Education, 789–795.

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 849

Llerena-Izquierdo, J., Ayala-Chauvin, M., & Realpe-Robalino, P. (2024). Impact of

generative AI on programming interest and engagement in higher education.

Education and Information Technologies, 29(4), 1234–1256.

MacNeil, S., Denny, P., Glassman, E., Jalali, S., & Tran, K. (2023). Experiences from using

code explanations generated by large language models in a web programming course.

Proceedings of the 54th ACM Technical Symposium on Computer Science Education,

931–937.

Pankiewicz, M., & Baker, R. (2024). GPT-4 hints for compiler error resolution in

programming education. Computers & Education, 200, 104812.

Park, J., & Kim, S. (2025). Comparative effectiveness of ChatGPT versus traditional

programming resources. Educational Technology Research and Development, 73(1),

45–62.

Prather, J., Denny, P., & Luxton-Reilly, A. (2024). The impact of generative AI on

metacognition in programming education. Computers & Education, 203, 104867.

Rahman, M., & Watanobe, Y. (2023). ChatGPT for programming education: Opportunities

and challenges. IEEE Access, 11, 34567–34578.

Reeves, S., Chen, L., & Denny, P. (2023). Understanding student reliance on AI

programming tools. Proceedings of the 2023 ACM Conference on Innovation and

Technology in Computer Science Education, 234–240.

Schlegel, V., Schneegass, S., & Broy, N. (2019). Natural language programming: Bridging

the gap between human intent and machine execution. Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems, 1–12.

Song, J., Chen, X., & Denny, P. (2024). AI-generated programming projects: Quality

assessment and student outcomes. Computers & Education, 201, 104823.

Vadaparty, S., Denny, P., & Bailey, J. (2024). LLM integration for problem decomposition in

programming education. Proceedings of the 2024 ACM Conference on Innovation

and Technology in Computer Science Education, 167–173.

Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal

of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-

2648.2005.03621.x

Wilson, A., & Nishimoto, R. (2024). Encouraging responsible use of generative AI in

engineering programming education. Proceedings of the 2024 ASEE Annual

Conference & Exposition, 234–245.

Wing, J. M. (2010). Computational thinking: What and why? The Link Magazine, 20–23.

Wu, J., Yu, Y., & Li, H. (2025). Personal Assistant-GPT vs. ChatGPT: Enhancing STEM

education through AI-assisted programming. Computers & Education, 204, 104879.

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 850

Yilmaz, R., & Karaoglan Yilmaz, F. (2023). The impact of ChatGPT on programming

education: Student perspectives and learning outcomes. Educational Technology

Research and Development, 71(4), 1123–1145.

Contact email: l.miller3@uqconnect.edu.au

The Paris Conference on Education 2025 Official Conference Proceedings

ISSN: 2758-0962 851

