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Abstract 
The onset of Covid-19 has impacted educational processes, particularly assessment, in a way 
never seen before. Automatic Programming Assessment (APA) can be unfair and inaccurate 
when used for summative assessment. This paper aimed to investigate to what extent the 
students had to adapt to automatic assessment and to determine the value of APA as a 
formative assessment tool. During a practical session in the computer lab, seven tasks were 
assigned to the students. The tasks resembled a step-by-step guide for writing a complete 
program that takes a user-specified number of integers, determines the minimum and 
maximum of these values, and performs calculations involving the minimum and maximum. 
The code that the students had written was uploaded to the APA system, allowing students to 
resubmit their work and improve their solutions as they went along. The analysis included 
marks per task, final marks of students, number of uploads per task, and the total number of 
uploads per student. General trends of these metrics were also observed. It was established 
that the majority of the students could successfully complete small programming tasks when 
re-acting to about two feedback comments per task. APA systems can be instrumental in 
supporting learning and are useful as a formative assessment tool. As a result of this study, 
we can point the way to develop systems which are smarter and more flexible. 
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Introduction 
 
The onset of Covid-19 has impacted educational processes and particularly assessment in a 
way never seen before or imagined. Education systems across the globe have responded to 
the Covid-19 induced disruptions in the manners mediated by their contexts. In previous 
research, it was found that Automatic Programming Assessment (APA) can be unfair and 
inaccurate when used for summative assessment (Liebenberg & Pieterse, 2018; Pieterse & 
Liebenberg, 2017; Ullah et al., 2018). However, APA may show potential for formative 
assessment purposes. What makes APA very appealing for formative assessment is the fact 
that it allows instant feedback to support real-time learning. This research aimed to 
investigate to what extent the students had to adapt to automatic assessment and to determine 
the value of APA as a formative assessment tool. 
 
Related Work 
 
Automatic Assessment 
 
Automatic program assessment systems have been used for more than 50 years (Douce, 
Livingstone, & Orwell, 2005). In a review of APA systems by Ihantola, Ahoniemi, Karavirta, 
and Seppälä (2010), developed in the period 2006 to 2010, it was observed that APAs are 
mainly used in programming contests and introductory programming courses. A tremendous 
number of tools and systems for APA have been developed (Ullah et al., 2018). Mekterović, 
Brkić, Milašinović, and Baranović (2020) and Cipriano, Fachada, and Alves (2022) remark 
that APA systems are rarely used outside the institutions in which they are developed and cite 
a number of systems which are not available or have not been updated in a long time. 
 
Many benefits of applying automatic assessment of programming assignments have been 
reported. Automatic assessment is bound to be consistent and objective (Arifi, Abdellah, 
Zahi, & Benabbou, 2015; Staubitz, Klement, Teusner, Renz, & Meinel, 2016), enables rapid 
feedback (Arifi et al., 2015; Liu et al., 2016; Ullah et al., 2018), and allows students to submit 
multiple improved versions of the programs they have written (Del Fatto et al., 2017; Staubitz 
et al., 2016). It can play a motivational role to engage students in the educational process 
(Šťastná, Juhár, Biňas, & Tomášek, 2015; Staubitz, Klement, Renz, Teusner, & Meinel, 
2015). The most appealing benefit seems to be the possibility of saving time (Ullah et al., 
2018). This comes as no surprise as it has been reported that assessment is one of the most 
often mentioned tasks that lecturers find burdensome (Pieterse & Sonnekus, 2003). Del Fatto 
et al. (2017) report how they effectively saved time when using a system, which can 
automatically identify correct code, reducing manual assessment to involve only code, which 
contains errors. 
 
Staubitz et al. (2015) describe a number of challenges associated with applying automatic 
assessment of programming tasks. Ullah et al. (2018) mention the problem that many APA 
systems suffer from inflexibility and unfair grading. An important challenge, which is often 
overlooked, is that considerable time and effort need to be devoted to the implementation of 
resources for automated assessment (Ala-Mutka, 2005; Pieterse, 2013; Pieterse & 
Liebenberg, 2017; Watanobe, Rahman, Rage, & Penugonda, 2021). Another problem is that 
the development of new exercises often requires considerable technical skills beyond the 
scope of the content being assessed (Korhonen & Malmi, 2000; Pieterse, 2013). To address 
this problem Solms and Pieterse (2016) and Ullah et al. (2018) call for standardization. 
 



 

Combéfis and Schils (2016) point to the complexity of being able to provide sensible 
feedback as it is nearly impossible to anticipate all errors that can occur in novice programs 
and to have test cases to identify each of the anticipated errors. They propose similarity 
clustering to improve the accuracy of feedback. Lepp et al. (2016) report that the design of 
automatically assessed exercise tests was one of the most difficult challenges they faced 
when applying a Moodle plug-in VPL for automatic assessment of programming 
assignments. 
 
When using an APA system, educators should keep the reasons for assessment in mind and 
also guide their students to appreciate these goals in order to gain the most value from the 
assessment. 
 
Assessment Goals 
 
Tew and Guzdial (2010) suggest that there is no agreement on what constitutes valid 
measures of student learning in computing. Researchers speculate that students’ poor 
performance may be indicative of inaccurate measures of their ability and knowledge (Lister, 
2010; Tew & Guzdial, 2010). Often Bloom’s cognitive taxonomy (Battestilli & Korkes, 
2020; Bloom & Committee of College and University Examiners, 1964; Thompson, Luxton-
Reilly, Whalley, Hu, & Robbins, 2008; Ullah et al., 2019) or The Structure of the Observed 
Learning Outcome (SOLO) taxonomy (Biggs & Collis, 1982; Petersen, Craig, & Zingaro, 
2011) are used to determine the assessment goals of questions asked to evaluate the 
programming competence of students. 
 
The assessment of programming tasks is classified into three categories according to the 
assessment goals of the measure of student skills and understanding of programming tasks 
namely structural, functional and conceptual. 
 
Structural: A structural evaluation may include scrutiny of syntactical constructs and 
compliance with coding standards. These aspects are usually achieved through manual 
inspection. However, some authors have endeavoured to automate aspects of the structural 
assessment of programs (Ala−Mutka, Uimonen, & Jarvinen, 2004; Ali, Shukur, & Idris, 
2007). Parsons and Haden (2006) developed a drill and practice computer game for mastering 
syntax constructs. The game itself serves as a formative assessment of mastering these 
constructs and the scores of students when playing the game, can be used for summative 
assessment of the skills and knowledge of students regarding structural aspects of programs. 
 
Functional: The assessment of the functional correctness of a program written by a student 
can be achieved through the execution of the program using well-designed test cases (V 
Pieterse, 2013). Functional correctness may include the evaluation of aspects such as 
efficiency and proper memory management such as avoiding memory leaks (Ala-Mutka, 
2005). These may be measured using popular profiling tools such as Valgrind1, Pin2 and Dr. 
Memory3. The automation of the functional correctness of programs is commonplace (Arifi 
et al., 2015; Ihantola et al., 2010), and according to Tirronen and Tirronen (2016), modern 
techniques can practically ensure the functional correctness of student solutions. 
 
Conceptual: Evaluating the programming accomplishments of students on a conceptual level 
is probably the most difficult of the assessment goals to achieve. It is common to evaluate 
this using code reading questions or questions asking definitions or explanations in written 
exams (Petersen et al., 2011). Visual programming environments such as Scratch (Resnick et 



 

al., 2009) and Alice (Dann, Cooper, & Pausch, 2008) can be used to promote conceptual 
understanding. The evaluation of conceptual aspects when assessing programs written by 
students is, however, not easy to automate (Posavac, 2015). 
 
Formative Assessment 
 
Formative assessment or Assessment for learning aims at monitoring student learning to 
provide ongoing feedback that can aid in identifying students’ strengths and weaknesses in 
order to improve student attainment (Black & Wiliam, 2009). Ideally, in programming 
assessment, one should aim to take the whole spectrum of student achievement namely the 
students’ structural, functional and conceptual understanding of the work into account when 
assessing their programs. Although an automated assessment system is less suitable for 
summative assessment, it shows promise for formative assessment of programs written by 
students during their practical lab sessions – especially monitoring the performance of 
students and improving their programming ability over time (Ho, Chean, Chai, & Tan, 2019). 
Automated assessment can reduce educators’ effort, besides benefiting students with 
immediate feedback. Good and immediate feedback is one of the key components of learning 
programming (Lokar, 2019). 
 
Battestilli and Korkes (2020) found that it takes students more submission attempts in the 
APA when they are given questions that contain some starter code, than when they have to 
write their solution from scratch. However, when writing code from scratch, the students’ 
code quality can be impaired because the students are not required to actually understand the 
concept being tested and might be able to find a way to bypass or hack the tests of the APA. 
 
Zingaro, Petersen, and Craig (2012) state that traditional code-writing exam questions seem 
to require in addition to a mastery of several concepts, the ability to design with or synthesize 
those concepts. As a result, students obtain marks for peripheral code in addition to code that 
satisfies the aim of the question and the mark awarded may therefore not alert students to 
core misconceptions. Zingaro et al. (2012) propose that single-concept questions - questions 
targeting one concept, or adding one concept over a previous concept question - are more 
effective formative feedback tools. 
 
Tirronen and Tirronen (2016) saw how insufficient feedback, such as complicated compiler 
error messages or mere pass/fail feedback can hinder student progress. However, it is 
possible to induce positive behaviour with formative feedback. 
 
Methodology 
 
Scenario 
 
The study was carried out at a South African university. A convenience sample of 187 first-
year students enrolled in a Java programming course in the second semester made up the 
participants. 
 
Prior to the study's session, the students completed an assignment during the seven weekly 
practical lab sessions while they could seek assistance and feedback from the tutors and 
lecturer. Following completion of the task, a student submitted the program for manual 
assessment by a tutor. 



 

Data Collection 
 
The assignment that served as the source of the data for this study was automatically 
evaluated by the APA system (APAS) Fitchfork, which uses dynamic testing-oriented 
assessment. The system runs the student's solution against a number of test inputs, checking 
the results against a regular expression that specifies the expected results for each test input. 
This method has two significant drawbacks: it requires a working program, and the test cases 
that are selected for evaluation may reduce the effectiveness of the evaluation. 
 
Seven tasks were assigned to the students. During the session, the code that the students had 
written was posted to the APAS. It was assumed that they would complete the tasks in the 
prescribed order, which resembles a step-by-step guide for writing a complete program that 
takes a user-specified number of integers, determines the minimum and maximum of these 
values, and performs calculations involving the minimum and maximum. Table 1 
summarizes the seven tasks. 
 

Table 1: The seven tasks 

Task Nr Task Name Max 
marks 

1 Input 4 
2 Loop 9.5 
3 MinMax 12 
4 getSum 2 
5 getDiff 3 
6 getQuo 4 
7 Main 6 

 
Task 1 as Example 
 
To complete the first task, the students had to create a simple program that would ask the user 
for an integer number and then display that value in an output statement. A single test case 
was used to assess the task. Table 2 displays the feedback for projected output lines created 
by the student programs.  
 

 
Figure 1: Expected output for Task 1 

 
 
 
 
 
 
 
 
 
 



 

Table 2: Assessment of Task 1 with test value = 5 

Line Possible output Message Mark 
(max) 

1 Enter an integer: PASS prompt line 1 (1) 
 Other FAIL The prompt should end with a 

colon and a space 
0 (1) 

2&3 You entered 5 That’s all folks! PASS output line 3 (3) 
 You entered: 5 That’s all folks! FAIL Program output line 2 should 

NOT contain a colon 
2 (3) 

 5 FAIL The input should be on the same 
line as  the prompt  

1 (3) 

  FAIL The acknowledgement line is 
missing 

1 (3) 

 Other FAIL User input 0 (3) 
 
Analysis 
 
The uploaded files were downloaded after the students completed the assignment. The 
uploaded files as well as the marks and feedback that was given to students were analysed. 
The quantitative analysis included marks per task, final marks of students, number of uploads 
per task, and the total number of uploads per student. General trends of these metrics were 
also observed. 
 
Results and Discussion 
 
First Encounter 
 
The way students participated in the first task was investigated in order to determine to what 
extent the students had to adapt to automatic assessment, as this was their first encounter with 
an APAS. 
 
Figure 2 shows the number of students in three categories namely, file naming errors, other 
errors and no errors. Of the 184 students who attempted this task, only 128 (69.57%) 
completed the task successfully on their first attempt. Since this task is very easy, it is 
alarming that 56 (30.43%) of the students encountered problems when attempting this task. 
 

 
Figure 2: Types of errors in the first task (n=184) 

 
Analysis of the types of errors made by the students who were unsuccessful on their first 
attempt to get full marks for the task reveals that 27 (14.67%) saved their solutions using a 
file name other than the prescribed name at some stage. Under manual assessment, this kind 
of error would have no ill effect. Yet under automatic assessment, this error causes Fitchfork 



 

to fail, as the name of the file that is automatically compiled, executed and evaluated is key to 
the assessment of the code. If the file name is wrong the code is not assessed. 
 
Further analysis of the submissions of the 35 (19.02%) students who made mistakes other 
than file naming errors revealed only three types of errors: 
 

1. Uploading in the wrong slot: The solution to each task had to be uploaded to the 
designated upload slot which is specifically configured to assess the given task. Since 
there were seven tasks, there were seven different upload slots. Students can easily by 
accident just pick the wrong slot. 

2. Compiler errors: If the student code does not compile, it cannot be executed and 
evaluated, leaving the student with zero marks for the specific task. 

3. Layout errors: In order to simplify the memo specifications, a coding convention was 
adopted that required command line prompts to end with a colon and the input value 
to be typed on the same line as the prompt. Also, program output, other than prompts, 
should not contain colons. The students who violated this convention got feedback 
pinpointing this specific violation and corrected their transgression in their subsequent 
uploads. 

4. All errors students encountered when uploading their solutions to the first task had to 
do with the limitations and quirks of Fitchfork. 

 
Marks Distribution 
 
The distribution of the total marks that were automatically awarded to the students while 
completing the assignment is shown in Figure 3. It can be seen that the bulk of the students 
was awarded more than 60% for the assignment and that the final mark for the vast majority 
of the students (78 ÷ 187) = 41.7% were in the category 92% < 𝑥 ≤ 100%. 

 
Figure 3: Distribution of marks (n=187) 

 
When comparing this distribution with the distribution of automatically assigned marks by 
Matthíasdóttir and Arnalds (2015), the marks in our example show an obvious difference in 
the absence of high volumes of students being awarded very low marks. The same can be 
observed when comparing the distribution of marks reported by Liebenberg and Pieterse 
(2018) with the distribution of marks of our sample in Figure 3. This difference can be 



 

attributed to the use of formative assessment and the option granted to students to resubmit 
their solutions to rectify their mistakes. 
 
Number of Uploads 
 

 
Figure 4: Distribution of the number of uploads (n = 187) 

 
In Figure 4 the distribution of the total number of uploads for the assignment is shown. There 
were seven tasks and at least one upload per task was required to complete the assignment. 
The histogram is showing an almost normal distribution, slightly skewed to the left and 
having a peak in the number of students who uploaded between 10 and 15 times. 
 
Bottom 18 Students 
 
There were 18 students who had 10 or fewer uploads and achieved low marks. All but one 
did not complete all the tasks. They completed an average of 2.4 tasks and their average mark 
is 17.5%. The behaviour of these students represents that of non-committed students who 
often put in very little effort and just want to get out of the lab as soon as possible. 
 
Careless or Effortless 
 
Only two students uploaded exactly seven times with one upload per task. They obtained an 
average mark of 76.5%. Their behaviour might be similar to the abovementioned non-
committed students, the only difference being they were able to complete most of the tasks 
correctly. They seemed to be careless about the tasks they did not complete correctly and 
probably did not even read the feedback. 
 
Ninety-three students completed the assignment using between 9 and 15 uploads. Their 
average mark is 84.9% and 29% of them achieved 100%. The average number of uploads per 
task is 1.82. These students seem competent in terms of programming abilities, can follow 
instructions carefully and can successfully resolve problems based on the feedback. 
 
Majority Group  
 
There are 74 students in the category of students who used more than 16 uploads during the 
assignment. Three of them uploaded more than 30 times. The average mark of these 74 
students is 85.1% and 24.3% of them achieved 100%. The average number of uploads per 



 

task is 2.98. These students achieved on average slightly better than those discussed above, in 
terms of marks. They, however, needed more uploads to reach this achievement. These 
students may be less competent in programming than the previous category, yet they 
achieved good results. Since every upload is accompanied by feedback, pinpointing specific 
errors, they may have benefited from the feedback. 
 
Conclusion 
 
Despite this study being conducted before the pandemic, the rapid transition to remote 
emergency teaching and learning has accelerated the adoption of automatic assessment 
systems, particularly in the computing fields, leading to the widespread implementation of 
APASs. 
 
Arguably, the most advantageous aspect of APASs is their ability to offer instant feedback. 
Unlike the situation where students had to wait for several minutes for a tutor to address their 
concerns, or even not receive feedback at all during the lockdown, all students utilizing the 
APAS in this lab session received feedback for each submission. This immediate feedback 
empowers students to make corrections to their programs and, in the process, facilitates their 
learning as they progress. The majority of the students uploaded about 3 times per task and 
managed to perform quite well. Their achievement might be explained by their learning from 
the feedback as intended with formative assessment. 
 
The students who are used to manual assessment where they receive partial marks even if 
their programs do not compile are forced by Fitchfork to upload programs that do compile. 
This can be considered an educational benefit in terms of encouraging careless students to 
pay more attention to syntax and programming language features when writing their 
solutions. Based on our observations, students tend to be lax in following instructions, 
whereas the APAS demands meticulous attention to instructions. Consequently, the APAS 
presents valuable opportunities for students to hone their ability to pay attention to detail and 
follow instructions accurately. This skill holds particular significance in the field of IT. 
 
The assessment done with Fitchfork is based only on the output of the student’s solution. 
Sometimes a small deviation in the code can derail the whole assessment process. For 
example, a spelling error in a variable name can cause a compiler error resulting in Fitchfork 
being unable to assess the code. If the code was assessed manually, the assessor can give 
partial marks for the overall structure and algorithm used whereas automatic assessment 
awards zero in such cases. Furthermore, it is not possible to verify compliance with coding 
standards such as identifier names, indentation and comments, use of system constants, 
implicit and explicit type casting and types of loops used. 
 
Since this was the students’ first encounter with an APAS, we suspect that some of the 
problems mentioned above will get better over time as the students get acquainted with the 
system. 
 
In this study, we established that the majority of our students managed to successfully 
complete small programming tasks using an average of about three tries per task. This means 
that they reacted about two times to feedback comments and improved their solutions 
towards the requirements for the task. Regrettably, we observed that there were cases where 
the feedback the students received was confusing and misleading. This is particularly true for 
cases where students’ programs did not compile - this is not conducive to learning.  



 

In light of the above-mentioned advantages and drawbacks of APASs in the context of post-
pandemic pedagogy, we conclude that APASs may effectively support learning. APA 
systems can be instrumental in supporting learning and are useful as a formative assessment 
tool. As a result of this study, we can point the way to develop systems which are smarter and 
more flexible. 
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