The Development of Teacher Trainees' Science Instructional by Active Learning Competencies through Lesson Study

Arthitaya Khaopraay, Phetchabun Rajabhat University, Thailand

The Osaka Conference on Education 2020 Official Conference Proceedings

Abstract

The research objective was to develop science instructional competencies by active learning of teacher trainees through lesson study. The methodology of practical action research was implemented in this study. The research was conducted in two phases in accordance with the four cycles of practical action research framework. The target participants were thirty fifth-year students, during their internship of teaching practicum, in the Department of General Science, the Faculty of Education, Phetchabun Rajabhat University in Thailand. The research instruments consisted observation form in regard to instruction and evaluation forms in regard to science instructional by active learning competencies. Analyze qualitative data through content analysis. And find the sum of the student teacher proactive science instructional competency scores then compare the score difference before and after the lesson study. The research findings revealed that the intern students during their teaching practicum demonstrated the potential in science instructional by active learning competencies in three aspects: the aspect of instructional design; the aspect of activities instructional; and the aspect of assessment and evaluation related to instructional. The positive developments were also observed in all aspects and indicators.

Keywords: Science Instructional by Active Learning, Lesson Study, Teacher Trainees

iafor

The International Academic Forum www.iafor.org

Introduction

The 21st century is an age of information and changes in both economic and social perspectives as well as education systems. Education systems still have many problems including educational disparities in educational opportunities and equality which is required to be adjusted in accordance with such changes. Teaching methods should be adaptable to the changing world, so it is necessary to constantly produce and develop teachers to support the changes. Student-oriented education creates students' characteristics consistent with the National Education Plan, the National Economic and Social Development Plan along with the course content or curriculum in the teaching profession should be modified to be up-to-date in accordance with dynamic global and Thai social contexts.

Science is a matter of learning about nature by using the process of observing, exploring, examining and experimenting with natural phenomena and organizing principles, concepts and theories. Therefore, teaching science aims to make students the most self-discovery. Teachers can execute instructions in a variety of ways such as project-based learning, inquiry-based learning, and problem-based learning. Each of the methods focuses on teaching learners to practice, which will increase knowledge and skills according to Simpson (1972) who states that practical skills can be developed with practices, and good and correct practices lead to expertise and persistence. Instruction can be executed in different ways including active learning that focuses on practical learning, and higher-order thinking highlighting on analysis, synthesis and evaluation which enables students to be not just listeners, but also active learners who are required to read, write, and ask questions to make discussion. The methods also take into account students' prior knowledge and needs as a priority. Science courses can be conduct by using those methods as stated by Chumnankit, B. (2006, pp.1-7) mentioning that science instructional by active learning is a teaching method in which students are demanded to find content to generate knowledge by speaking, writing, reading, reflecting or asking questions, which are valuable, exciting, fun, and challenging. Students can learn according to their own abilities and need can apply knowledge to daily life.

The Researcher is an instructor for a Bachelor of Education General Science Program, Faculty of Education, Phetchabun Rajabhat University, teaching in the course in which fifth-year teacher trainees are requisite to practice teaching in an educational institution for one year as a teacher trainee. The researcher as a teacher trainee's supervisor has found the problems. For instance, most teacher trainees use a lecture method, lack ability to conduct science learning that gives their learners profound knowledge and understanding of the concepts taught, cannot create learning activities that enable their learners to generate knowledge on their own through advanced thinking, and have inability to generate correct measurement and evaluation tools for science instructional.

Lesson study originated in Japan (Isoda, 2007; Saito, 2012). It has the characteristics of effective professional development: teachers are actively involved in both the process as the products, the focus is on content and specifically on teacher trainees learning this content, it takes place over a longer time span, and there is coherence between the activities (Garet et al., 2001, Penuel et al., 2007). In Lesson study, teachers in collaboration select a topic and plan and prepare a lesson (called a research

lesson), one teacher enacts the research lesson and the others observe the teacher trainees in class, and finally teachers discuss their observations (Lewis et al., 2006, Isoda et al., 2007, Stepanek et al., 2007). The implementation of the cycle consists of planning, seeing, and reflecting. This research is interested in applying concepts, principles and processes of lesson study to the development in science instructional competencies by active learning of teacher trainees in three areas: an instructional design, instructional activities, and assessment and evaluation related to instructional.

Methodology

This research aims to develop science instructional competencies by active learning of teacher trainees through lesson study. The target group is 30 teacher trainees who study fifth-year General Science Program, Faculty of Education Phetchabun Rajabhat University in Thailand. This research is a Practical Action Research of which process consists of two stages and four practical action research cycles. The one stage is before lesson study which comprises of two cycles. The first cycle is the study of analysis and synthesis of conceptual framework and processes of lesson study. The second cycle is the creation and enhancement of research tools. The other stage is during lesson study which also includes two cycles. The third cycle is an active science instructional practice through lesson study of teacher trainees. The fourth cycle is a science instructional by active learning through lesson study, while the researcher acts as a consultant and motivator who set issues and direct them to think, act, see, and reflect. Teacher trainees can develop their science instructional by active learning which can utilize in doing practices in a classroom, develop selfimprovement, collect data for producing an appropriate lesson study process. To demonstrate the research processes, Table 1 is provided.

	Phase 1		Phase 2		
	before lesson study		during lesson study		
Practical	Cycle 1:	Cycle 2:	Cycle 3:	Cycle 4:	
Action	Study, analyze,	Build and	Practice science	Practice science	
Research	synthesis,	develop	instructional by	instructional by	
cycle	conceptual	research tools	active learning	active learning	
-	framework		through lesson	through lesson	
			study	study	
Planning : P	The researcher	The researcher	- setting the	- setting the	
	- Studying	- Determining	roles of the	roles of the	
	basic	the indicators	researcher and	researcher and	
	information	of the science	teacher trainees	teacher trainees	
	- Setting a	instructional	- The		
	conceptual	by active	researcher		
	framework	learning of	made		
	- Planning	teacher	arrangements to		
	research	trainees	create		
		- Building and	understanding		
		developing	with teacher		
		research tools	trainees		
Acting : A	The researcher	The researcher	- The	- The	
	- synthesize	participate in	researchers and	researcher and	
	information	the orientation	teacher trainees	teacher trainees	

	Phase 1		Phase 2		
	before lesson study		during lesson study		
Practical	Cycle 1:	Cycle 2:	Cycle 3:	Cycle 4:	
Action	Study, analyze,	Build and	Practice science	Practice science	
Research	synthesis,	develop	instructional by	instructional by	
cycle	conceptual	research tools	active learning	active learning	
-	framework		through lesson	through lesson	
			study	study	
	related to the	class to study	create mutual	collaboratively	
	development of	the contexts of	understanding	implement	
	science	science	- The	science	
	instructional by	instructional	researcher and	instructional by	
	active learning	by active	teacher trainees	active learning	
	of teacher	learning	collaboratively	through lesson	
	trainees through		implement	study (Lesson	
	lesson study		science	study) (Plan –	
			instructional by	See – Reflect)	
			active learning		
			through lesson		
			study (Lesson		
			study) (Plan –		
		T 1 1	See – Reflect)	0.11	
Observing :	I ne	I ne research	- Collecting	- Collecting	
0	professionals	- Synthesizing	trainaas'	trainaas'	
	examine the	data mom	narformanaa	narformanaa	
	doveloping the	student	the results on	the results on	
	science	an orientation	both teacher	hoth teacher	
	instructional by	class	trainees and	trainees and	
	active learning	assessing the	students	students	
	through lesson	science	- assessing the	- assessing the	
	study	instructional	science	science	
	Study	by active	instructional by	instructional by	
		learning of	active learning	active learning	
		teacher	of teacher	of teacher	
		trainees	trainees after	trainees after	
			implementing	implementing	
			lesson study for	lesson study for	
			the first time	the second time	
Reflecting: R	Reflecting,	Reflecting,	Reflecting,	- Reflecting,	
	improving, and	improving, and	improving, and	improving, and	
	revising for the	revising for the	revising for the	revising for the	
	first time	second time	third time	fourth time	
				- Presenting	
research results					
Table 1 C	anducting research	according to the	Practical Action D.	agaarah Cyala	

 Table 1. Conducting research according to the Practical Action Research Cycle

Research instruments are instructional observation forms and science instructional by active learning evaluation forms. They have the characteristic of rubrics scoring and contains lists of behaviors based on three indicators which are eight lists of the

instructional design, six lists of the operations of instructional activities, and three lists of the measurement and evaluation of instructional. The total lists are 17 resulting in 51 as the full score. The research conducts by an assessment by the researcher collecting evidence data about science instructional by active learning of teacher trainees from various sources which are 1) instructional plans for teacher trainees 2) recording teaching in classrooms 3) observing instructional 4) reflecting on instructional results through lesson study to analyze and give scores corresponding to performance levels. The performance levels are divided into three – low, moderate, and high (An overall score fewer than 17 is low. between 18 and 34 is moderate, and between 35 - 51 is high). After that, the research compares the difference in scores between before and after lesson study together with levels of science instructional by active learning and conducts a qualitative-data analysis.

Research Findings

The results of analysis of the competency of science instructional by active learning between before and after studying the lesson study shows that all students and teachers had higher competency scores in science instructional by active learning at one level. That is to say, 24 students increased their scores from a low to medium level and 6 students improved from a medium to high level, as detailed in Table 2.

Teacher	Before le	esson study	After lesson study		Changes in the competency
trainees	Total	Interpret	Total	Interpret	level of science
no.	score	results	score	results	instructional by active
					learning
Scil	13	low	33	moderate	Increased
Sci2	12	low	29	moderate	Increased
Sci3	15	low	33	moderate	Increased
Sci4	27	moderate	46	High	Increased
Sci5	16	low	34	moderate	Increased
Sci6	14	low	33	moderate	Increased
Sci7	30	moderate	45	High	Increased
Sci8	13	low	29	moderate	Increased
Sci9	13	low	32	moderate	Increased
Sci10	12	low	30	moderate	Increased
Sci 11	32	moderate	46	High	Increased
Sci12	14	low	32	moderate	Increased
Sci13	12	low	32	moderate	Increased
Sci14	15	low	33	moderate	Increased
Sci15	32	moderate	48	High	Increased
Sci16	16	low	34	moderate	Increased
Sci17	13	low	33	moderate	Increased
Sci18	12	low	28	moderate	Increased
Sci19	15	low	32	moderate	Increased
Sci20	16	low	33	moderate	Increased
Sci21	30	moderate	46	High	Increased
Sci22	15	low	30	moderate	Increased
Sci23	13	low	29	moderate	Increased
Sci24	11	low	29	moderate	Increased

Teacher	Before le	Before lesson study Afte		sson study	Changes in the competency
trainees	Total	Interpret	Total	Interpret	level of science
no.	score	results	score	results	instructional by active
					learning
Sci25	13	low	33	moderate	Increased
Sci26	31	moderate	48	High	Increased
Sci27	16	low	32	moderate	Increased
Sci28	14	low	31	moderate	Increased
Sci29	13	low	31	moderate	Increased
Sci30	13	low	29	moderate	Increased

Table 2. shows the results of the analysis of the science instructional by active learning performance of teacher trainees through lesson study of individual teacher trainees.

From studying the class and observing the instructional of teacher trainees, competencies in designing instructional were founded that the instructional plan of the teacher trainees has a comprehensive set of interrelated elements, learning activities are aligned with the indicators, objectives and content, and learning activities successfully promoted the thinking process of students. Likewise, competencies in organizing instructional activities shows that teacher trainees could use instructional methods to promote students to think, solve problems, and focus on the improvement of advanced thinking skills. The methods that were conducted include STEM instructional methods, problem-based learning methods. Self-practicing learning activities provided many different materials, equipment, media, technology and learning resources suitable for the content which enabled students to use the learning resources themselves. Apart from this, the competencies of the measurement and evaluation in instructional were found that the measurements and evaluations on the indicators/learning outcomes in terms of knowledge, skills and attributes were under real conditions

From the reflection of the instructional results through the lesson study of teacher trainees, it indicated that studying and seeing lesson study contributed teacher trainees to recognize actual operational conditions and to realize the consequences of applying the implement of science instructional by active learning. They also had the opportunity to discuss and share their knowledge gained from hands-on teaching experience and observation (teacher trainees no. 1, 6, 14, 17, 28). Reflections enables them to review which factors are useful or useless for instructional including what should be improved (teacher trainees no. 3, 5, 13, 15, 25, 29). Lesson study caused them to adjust their teaching behavior which gave rise to the changes in students. This made them discern the importance and gain confidence in lesson study, and demand to participate in the next class (teacher trainees no. 4, 7, 15, 26).

Conclusions and Discussions

The results of the research showed that all teacher trainees had higher competency scores in science instructional by active learning at one level after conducting lesson study. Since lesson study was a long-term continuous operating cycle, teacher trainees had the opportunity to use the study through repeated lessons. Studying and seeing lesson study in the teaching stage brough about teacher trainees to recognize actual operational conditions and to realize the consequences of applying the implement of

science instructional by active learning. They also had the opportunity to discuss and share their knowledge gained from hands-on teaching experience and observation. In the reflection stage, they could review which factors are useful or useless for learning management including what should be improved. This is aligned with Triwaranyu. C. (2013) who states that the most important stages in implementing lesson study are the stages of teaching and seeing and reflecting seeing that they encourage teachers to create perspectives, concepts, body of knowledge and understanding of instructional, and to solve teacher instructional problems according to students' learning.

Furthermore, lesson study enables teacher trainees who in the same grade to have a close relationship and collaboration, and to share and exchange knowledge related to work experience frequently. The study of Wasayangkull. P. (2014) found that lesson study is a cooperative operation of the classroom group as a professional learning community, PLC, in which teachers work together by sharing and exchanging their knowledge and experience along with educational resources, and teachers also promote a positive attitude towards working and a concept of teacher development with one another.

Acknowledgements

I would like to thank Faculty of Education, Phetchabun Rajabhat University, family for the endless support and love and thank you for providing me with the ability and perseverance that were needed to complete this work.

References

Triwaranyu. C. (2013). Lesson study, concept and professional development process teachers to develop student' learning. *Documentation for teacher development using the system buildin process coaching and mentoring module 3*. Bangkok: Faculty of Education Chulalongkorn University.

Wasayangkull. P. (2014). Procedures and effects of lesson study on teacher' learning: a social network analysis. *An Online Journal of Education (OJED)*, 9(2), 500-509.

Chumnankit, B. (2006). Do you need to learn to learn in higher education. *Journal of Knowledge Management*, 1(1), 1-7.

Garet, M.S., et al. (2001). What makes professional development effective? Results From a national sample of teachers. *American Education Research Journal*, 38 (4), 915-945.

Isoda, M. (2007). A brief history in mathematics Lesson Study in Japan. In: M. Isoda, Y. Ohara, and T. Miyakawa, eds. *Japanese Lesson Study in mathematics*. NJ: World Scientific.

Isoda, M., et al. (2007). *Japanese Lesson Study in mathematics: its impact, diversity and potential for education improvement*. Singapore: World Scientific Publishing Co., Pte. Ltd.

Lewis, C., Perry, R., and Mutara, A. (2006). How should research contribute to instructional improvement? The case of Lesson Study. *Educational Researche*, 35(3), 3-14.

Penuel, W., et al. (2007). What makes makes professional development effective? Strategies that foster curriculum implementation. *American Education Research Journal*, 44 (4), 921-958.

Saito, E. (2012). Key issues of Lesson Study in Japan and the United States: a literature review. *Professional Development in Education*, 38 (5), 777-789.

Simpson, D. (1972). *Teaching physical education: A system approach*. Boston: Houghton Mufflin Co.

Stepanek, J., Apple, G., Leong. M. T., & Mitchell, M. (2007). *Leading Lesson Study: a practical guide for teachers and facilitators*. Thousand Oaks, CA: Corwin Press.

Contact email: khaopraay.a@gmail.com