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Abstract 

Vygotsky’s (1986) theory of the Zone of Proximal Development (ZPD) is often cited in 

pedagogical approaches that position the learning just above the learner’s independent 

problem-solving level, but which the learner can do with the help of a More Knowledgeable 

Other (MKO). However, these approaches reflect only a partial understanding of Vygotsky’s 

work, which describes learners of the same ability level as having ZPDs with vastly different 

potential for “stretching” to more complex content (Zaretskii, 2009). Learning situated at the 

outer limits of one’s ZPD has the potential to increase the efficiency and quantity of learning 

over traditional methods of instruction. The present Randomized Control Trial placed Pre-K 

to 2nd grade learners (N = 1407) into a business-as-usual control group, or a treatment 

condition designed to explore the elasticity of their ZPDs and its leveraging effects on their 

learning. Key findings showed that when compared to the control group, learners in the 

treatment group were able to significantly increase their learning pace and the amount of 

content learned, while continuing to demonstrate mastery of the content. Implications from 

this work suggest that better understanding and leveraging the ways in which learners’ ZPDs 

demonstrate varying elasticity (ability to stretch) may provide opportunities to accelerate 

learning and mastery of content, especially for learners who are most at risk for not meeting 

grade level expectations. 
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Introduction 

 

The performance of K-12 students in the United States has long faced significant challenges 

in mathematics and reading. National measures of achievement have consistently shown 

more than two-thirds of 4th and 8th graders performing below proficiency expectations 

(deBrey, et al., 2019; NAEP, 2022), with measures of international achievement well behind 

their peers in other nations (NCES, 2022; OECD, 2022). The recent Covid-19 pandemic 

intensified this challenge, with many learners as much as two years behind their grade level 

expectations (Dorn et al., 2021; Patrinos, Vegas, & Carter-Rau, 2022). Additionally, related 

research shows that students who leave kindergarten without critical math and literacy 

competencies are likely to fall further behind as they move from grade to grade (Duncan et 

al., 2007). Contributing to these challenges is dramatic learner variability present before 

learners even begin formal schooling (Thai, Betts, & Gunderia, 2022; Pape, 2018). Learners 

often begin kindergarten with vast differences in their prior knowledge and readiness-to-learn 

in school settings (Betts, Thai, Jacobs, & Li, 2020; McWayne et al., 2012). These differences 

are often exacerbated rather than addressed by traditional methods of instruction that target 

the collective learning needs of both whole and small groups of learners rather than the 

unique needs of individual learners. Unlike one-to-one tutors, most classroom teachers 

simply do not have the time to assess and address every individual need of each learner 

(Bloom, 1984). 

 

The Problem  

 

Addressing lost learning opportunities requires understanding and mitigating the factors that 

contribute to disparities in learning outcomes. It requires acknowledging that curricula and 

instructional approaches that adhere rigidly to grade-level standards without considering 

students' readiness-to-learn can cause gaps to form in the learner’s architecture of 

understanding. To bridge these gaps, a two-pronged solution is essential. Firstly, there must 

be mechanisms to swiftly identify and address gaps or misunderstandings in foundational or 

prerequisite content. Secondly, adaptive learning pathways that utilize individual learners' 

existing competencies to efficiently facilitate new learning must be developed. Solving for 

this in traditional classrooms is extremely difficult due to time and resource constraints. 

However, through combining various principles of the learning sciences and the affordances 

of “Smart Learning” systems that incorporate Artificial Intelligence and machine learning, it 

is now possible to develop solutions that can address these challenges at scale (Betts et al., 

2020; Betts, Thai, & Gunderia, 2021). 

 

Theoretical Framework 

 

Various theories explain why some children seem to learn easily while others do not. Bloom's 

(1984) theory of Mastery Learning challenged traditional educational models by suggesting a 

move from ‘one-size-fits-all’ teaching modes to more personalized approaches. Bloom 

explained that the typical classroom setting, where all students receive the same instruction at 

the same pace culminating in a standardized assessment, benefitted some students while 

disadvantaging others (Guskey, 1997). For example, in traditional settings the test often 

marks the end of learning a concept, affording students only one chance to demonstrate their 

understanding. Moreover, learners are frequently required to move on to subsequent content 

whether or not they have mastered prerequisite content (Au, 2007). Consequently, this 

approach can create a cumulative disadvantage for those who do not grasp concepts as 



quickly, leading to a widening gap in understanding as the curriculum progresses (Bloom, 

1968, 1984; Guskey, 1997). 

 

In contrast, Bloom's observations of one-on-one tutoring revealed a strikingly different 

outcome. Tutors provided highly individualized feedback, allowing students to proceed only 

after they had shown proficiency in the current topic (Bloom, 1984; Guskey, 1997). This 

required the tutor’s deep knowledge of the content, including understanding of granular 

learning objectives and optimal learning trajectories (Guskey, 1997). This led Bloom to posit 

that if classroom instruction could emulate the individualized approach of tutors, including 

elements like detailed knowledge maps, pre-assessments, targeted feedback, corrective 

measures, and enrichment activities, all students could achieve a higher level of 

understanding (see Figure 1; Bloom, 1968, 1984). Bloom's Mastery Learning theory held that 

all students could achieve with the right pace, high-quality materials, and pedagogy.  

 

 
Figure 1: Bloom's Mastering Learning Model. Adapted from Bloom (1968) and Guskey (1997), 

sourced from Betts (2019) 

 

Long before Bloom, Vygotsky (1986; Vygotsky & Cole, 1978) described the optimal 

conditions for learning—primarily the importance of learning that was guided by a More 

Knowledgeable Other (MKO) through Zones of Development (ZoD). Today, the application 

of Vygotsky’s theories in K-12 education often lacks depth (John-Steiner & Mahn, 1996). 

Typically, the role of the MKO is narrowly ascribed to the teacher, overlooking the diverse 

array of individuals and resources that can facilitate learning (Rogoff, 1990), including 

“Smart Learning” digital resources that deploy “intelligent tutors” (Betts, Thai, & Gunderia, 

2021). Moreover, common understanding of Vygotsky’s ZoDs has frequently been reduced to 

a narrow focus on only the Zone of Proximal Development (ZPD)—without a clear 

understanding of how that ZPD fits within the overall learning theory. Furthermore, the ZPD 

is frequently misunderstood as a fixed range or level that can be addressed through uniform 

strategies (i.e., the very next thing to be learned), rather than as a fluid and elastic space of 

potential development unique to each learner (Zaretskii, 2009; Vygotsky, 1986).  

 

Vygotsky's framework for understanding learning and development encompasses several 

zones that are critical to optimizing learning (see Figure 2; Zaretskii, 2009). The Zone of 

Actual Development (ZAD) represents what a learner can accomplish independently and 



serves as a baseline for assessing potential growth (Vygotsky, 1986). The Zone of Proximal 

Development (ZPD) is the area where learners can perform a task with guidance and support 

of an MKO; this is where learning is most effective (Chaiklin, 2003; Vygotsky, 1986). 

Beyond the ZPD lies the Zone of Insurmountable Difficulty (ZID), where the task becomes 

too challenging for the learner, even with assistance or help of an MKO (Daniels, 2008; 

Vygotsky, 1986). More importantly, at the boundary between the ZPD and the ZID lies the 

Point of Difficulty (PoD), which represents the point at which the potential for maximum 

learning with an MKO can occur (Vygotsky, 1986; Zaretskii, 2009). A comprehensive 

understanding of these zones enables educators to scaffold instruction effectively in the 

moment, ensuring that students are neither under-challenged within the ZAD nor pushed 

beyond their ZPD into frustration (Gallimore & Tharp, 1990).  

 

 
Figure 2: Vygotsky’s Zones of Development (Betts, Thai, & Gunderia, 2021; Zaretskii, 2009) 

 

Furthermore, it is vital to understand the ways in which each learner’s ZPD varies. Citing 

Vygotsky’s work, Zaretiskii (2009) explains that while two learners are similar in terms of 

their actual development, they may differ greatly in what they can learn with support: 

 

One child can solve problems at a nine-year-old level, while the other one performs at 

a twelve-year-old level. This begs the question: do the levels of development of these 

children differ? Obviously, yes, but not in terms of their actual level. Instead, they 

differ in terms of the breadth of their ZPD. One child, as Vygotsky wrote, has a ZPD 

that is four years ahead of his mental age, while the other is one year ahead. In terms 

of the state of maturing processes, one child has gone four times farther than the 

other, and this must be kept in mind both in assessing that child’s development and in 

educating him (p. 75). 



Understanding the elasticity of the ZPD is an important part of increasing learning efficiency. 

It may also inform the design of interventions, including those deployed in Smart Learning 

systems, that are sensitive to learners’ individual capabilities and can quickly identify the 

optimal level of challenge required for learning, thereby fully leveraging the potential of the 

ZPD (Zaretskii, 2009). 

 

Building “Smart Learning” Systems That Leverage Bloom and Vygotsky  

 

Applying the learning theories of Bloom and Vygotsky, the learning engineering team at Age 

of Learning, an international EdTech company, has spent nearly a decade developing a smart 

learning system for identifying and teaching students within their ZPDs. This Personalized 

Mastery Learning Ecosystem (PMLE) uses formative assessment, direct instruction, and 

dynamic scaffolding features to locate a student’s ZPD and act as a More Knowledgeable 

Other to facilitate optimal and efficient learning (Betts, Thai, & Gunderia, 2021; Owen & 

Hughes, 2019; Thai, Betts, & Gunderia, 2022). This system is the underlying framework 

upon which our personalized learning program—My Reading Academy—is built.  

 

Components of the Personalized Mastery Learning Ecosystem (Adaptive System Only) 

 

The complete Personalized Mastery Learning Ecosystem is comprised of many components. 

For the purposes of the present discussion, only the components of the digital adaptive 

personalized learning system used by the student are discussed. Other components of the 

PMLE (e.g., parent/caregiver portal, teacher portal, etc.) are beyond the scope of this study 

(e.g., see Betts, Thai, and Gunderia, 2021; Thai, Betts, and Gunderia, 2022). 

 

Knowledge Map  

 

To find a student’s ZPD, it is important to have a comprehensive understanding of the 

possibility space for a learner’s potential ZPD. In the PMLE, this possibility space is 

described in a data structure called a Knowledge Map (KM). Deeply aligned with Bloom’s 

(1984) theory of Mastery Learning, a KM is a framework that uses discrete and granular 

learning objectives to map out all the relationships between concepts, principles, skills, and 

data in a knowledge space (e.g., foundational reading skills, etc.). A KM provides the basis 

for efficient identification of what students know, what they do not yet know, and what they 

are most ready to learn next (Figure 3). Each “node” on the KM represents a specific learning 

objective (LO). These LOs are connected by various relationships (e.g., pre-requisite, 

successor, parallel, etc.), forming numerous potential pathways through the KM for students 

to achieve mastery in a subject (Figure 4).  

 



 
Figure 3: Example Knowledge Map 

 

 
Figure 4: Example learning objectives in a learning progression 

 

Learning Activities 

 

Students advance through the system by demonstrating their mastery via digital interactions 

called Learning Activities (e.g., games, digital books, etc.). These activities are continuously 

assessed to determine the learner’s level of understanding, and to identify where and when 

MKO features (e.g., wrong answer feedback, scaffolding, modeling, etc.) can be deployed to 



advance in-the-moment learning. Within the system, there are two main types of learning 

activities: Direct Instruction and Scaffolded Assessment (i.e., practice activities with 

formative assessments).  

 

Direct Instruction 

 

Digital games or videos used for explicit teaching of specific objectives are defined as Direct 

Instruction. For example, My Reading Academy uses videos featuring Miracle, a human host, 

and Nano, a virtual robot (Figure 5). Miracle is the digital embodiment of the MKO who both 

instructs and provides feedback and scaffolds to Nano, who proxies the student. Nano, by 

design, always learns in their ZPD, mirroring potential student questions and 

misunderstandings. In this way, the student benefits from the support of the MKO even when 

they are not able to directly interact with her. 

 

 
Figure 5: Human host Miracle acts as the MKO for Nano, the robot proxy for the learner 

 

Scaffolded Assessment 

 

Scaffolded Assessment (SA) activities serve two purposes: to provide support to the student 

while practicing within their ZPD (should they need it) and to conduct formative assessment 

without supports to determine if the student is ready to advance. Each activity during 

Scaffolded Assessment provides students an opportunity to demonstrate mastery of a learning 

objective. The activity represented in Figure 6, for example, assesses a student's ability to 

match spoken words with their written form. When a student struggles, the system applies 

various levels of support, and offers direct instruction again as needed—just as an MKO 

would in a real-world learning context. Subsequent rounds are again presented without 

supports to reevaluate if the student's proficiency has improved or if the objective remains 

within their ZPD (i.e., the learner needs the help of an MKO). This cycle of assessment and 

support, typically over 4-6 rounds, repeats throughout the activity. When the student 

demonstrates mastery by completing the task correctly without help, they are considered to 

have moved into their Zone of Actual Development (see Figure 2), and it is time to move 

onto a new LO and a more challenging activity. 



 
Figure 6: My Reading Academy task to demonstrate mastery of matching written words 

to auditory prompts 

 

Scoring and Knowledge (Node) Map Traversal 

 

Data from Scaffolded Assessment activities are used to evaluate student proficiency on a 

learning objective, resulting in a Pass, Stay, or Fail condition (Figure 7). This designation 

depends on the student’s incorrect attempts and the amount of scaffolding needed. A Pass 

progresses the student to Direct Instruction on the next topic. A Stay keeps them in the same 

activity with new tasks and opportunities to receive scaffolds and feedback again as needed. 

A Fail sends them back to Direct Instruction for material review before reattempting the 

assessment. 

 

 
Figure 7: Node Traversal 

 

Opportunities for Iteration and Tuning 

 

Data gathered from learning activities provides opportunities for dynamically determining in 

which ZoD a learner is operating at any given moment. Learners requiring little to no help to 

successfully complete activities are likely working in their ZAD. Learners who are unable to 

pass activities across multiple attempts, even when provided with all feedback, supports, and 

scaffold features, are likely working in their ZID. Learners who require the support of many 

or all the support features but are making consistent progress toward mastery across attempts 

are likely working in their ZPD (see Figure 8). 



 
Figure 8: Zones of Development in the Personalized Mastery Learning Ecosystem 

 

The system provides various adjustable levers to tailor its functionality and optimize for 

different goals. For instance, increasing initial scaffolding can benefit students at their Point 

of Difficulty when learning a new objective. 

 

Tunable aspects of the system include: 

• Movement extent on passing or failing (default is sequential completion without 

skipping) 

• Activity sequence for each objective (default is Direct Instruction followed by 

Scaffolded Assessment) 

• Scaffold level and escalation pace (default is starting without scaffolds, increasing 

gradually with each wrong answer) 

• Duration of assessment activities (default is 4-6 rounds per activity) 

 

These tunable aspects allow for a wealth of exploration and research opportunities to 

investigate how the learning theories of Bloom and Vygotsky can be embodied in a digital 

learning context. 

 

Methods 

 

In the present study, we used a Randomized Control Trial (RCT) to investigate how a digital, 

adaptive, Smart Learning system can effectively identify and engage each learner's ZPD, 

dynamically adjust their learning path accordingly, and assess learning outcomes, all while 

maintaining learning efficacy. The specific research questions that guided this study were:  

 



(1) Can we use adaptivity levers in the system to increase learning efficiency while 

maintaining learning efficacy? 

(2) Can we use student performance in the system to identify evidence-based 

boundaries between a learner’s ZAD and ZPD?  

(3) Can the system identify learners operating within their ZADs who could increase 

their learning if advanced to later content with the support of MKO features? 

 

The significance of this research is threefold: theoretically, it contributes to the broader 

knowledge base of the learning sciences by testing foundational learning theories in a digital 

age. Practically, these findings can inform the design and development of adaptive learning 

products that produce more student learning more efficiently at scale. And lastly, findings 

may inform curriculum development and pedagogical strategies to better accommodate 

individual learner needs and increase learning efficiency within the classroom setting. 

 

Treatment 

 

For the purposes of this study, a new “Accelerate Mode” (AM) feature was developed as an 

intervention to implement with a test group of students. The AM is designed to leverage the 

relationships between learning objectives in our knowledge map, as well as scaffolding 

within activities, to digitally simulate the ways an MKO would dynamically respond to the 

teaching needs of an individual learner. By strategically adjusting the activity sequence for an 

LO, it is possible to determine whether the learner is operating within their ZAD or their 

ZPD.  

 

 
Figure 9: Node traversal in Accelerate Mode 

 

Accelerate Mode permits students to move directly to the terminal Scaffolded Assessment 

activity for a successor LO (or node), bypassing direct instruction and practice activities 

(Figure 9). If, when accelerated to the new node, the learner requires many or all of the MKO 

features (i.e., scaffolded supports and feedback) but still shows progress, the learner is 

deemed to be in their ZPD. In this case, AM is turned off for this student, allowing them to 

proceed through the new node and its successors with the default activity sequence and 

supports. Conversely, if the learner is able to successfully complete the successor node using 



few or none of the MKO supports, they are deemed to be in their ZAD, and are then 

accelerated to the next successor LO, where the process is repeated. 

 

Metrics & Hypotheses 

 

Successful placement of a learner in their ZPD was measured using four different metrics, 

including (1) Activity attempts per node (i.e., how many activities did learners play to  

“Pass” a node?), (2) Time spent per node (i.e., how long did it take for a learner to “Pass” a 

node?), (3) Node reach count (i.e., how many unique nodes did learners “Start”?), and (4) 

Performance on subsequent nodes (i.e., what was the pass rate on the first attempt of the 

“Terminal” activity of each subsequent node after beginning the experiment?). Related to 

these metrics, we developed three separate hypotheses as follows: 

I. The test group in Accelerate Mode should have lower activity attempts per node 

compared to the control group in default mode (i.e., learners are able to “Pass” the 

node in fewer play-throughs of each activity) 

II. The test group should have a lower quantity of time spent learning per node compared 

to the control group  

III. There should be no significant difference in performance on subsequent nodes 

between test and control groups (i.e., future learning remains robust even though only 

the terminal activity is played while in AM)  

 

Study Sample 

 

Dual performance-based criteria were used to determine student eligibility for the Accelerate 

Mode intervention. This dual-criteria approach was instrumental in capturing a broad 

spectrum of learner profiles, essential for delineating the boundaries between ZAD and ZPD 

accurately. Multiple eligibility criteria also allowed for investigation of learner variability and 

its impact on students’ respective ZPDs. The criteria for inclusion were: 

1) A streak of consecutive passed terminal assessment activities on the first attempt, 

referred to as “Boss Streak” 

2) An average of 90% pass rate on all activities played with at least 7 nodes completed, 

referred to as “High Pass Rate” 

 

These criteria were applied to a population of approximately 13,400 children enrolled (at the 

time) in the My Reading Academy program, resulting in the identification of about 1,400 Pre-

K to 2nd Grade students for inclusion in the sample. The split between Boss Streak and High 

Pass Rate learners was 80% versus 20% in both test and control.  

 

Data & Results 

 

The RCT was deployed for 3 weeks in which random sampling of eligible students generated 

about N = 700 observations per arm of the test. To control for Type I and Type II errors in our 

test results, we set the statistical thresholds of α = .05 and β = .2 respectively. After 3 weeks 

we were able to call the test with the following results (Table 1). 
 

 

 

 

 



 
N 

 
Mean  

 
Control        Test 

 
Control Test p-value 

Nodes Reached 706 701  6.52 9.16 .00 

Activity Attempts per Node 706 701  4.34 3.43 .00 

Avg Time Spent per Node 

(Mins) 

706 701 

 

14.48 11.88 .01 

Subsequent Node Pass Rate 706 701  .35 .42 .02 

Table 1: Summary Data for Accelerate Mode 1st Test 

 

Results demonstrated a remarkable set of outcomes for the test group over the control, 

including:  

• Improved learning speed—fewer attempts, less time to complete nodes  

• Increased node progress—more nodes reached  

• No appreciable negative impact on performance—higher pass rate 

 

When we looked at the results by the eligibility criteria segments, we observed an 

informative divergence that served as important investigative milestones into the questions of 

learner variability and students’ respective ZPDs (Tables 2 and 3). We observed that:  

• Both criteria increased node progress—more nodes reached for both Boss Streak 

& High Pass Rate cohorts 

• High Pass Rate cohort increased total learning efficiency—more nodes, in fewer 

attempts, in less time  

• Boss Streak cohort improved performance—pass rate on subsequent nodes was 

higher than control with mixed efficiency results (i.e., similar number of attempts 

in a similar amount of time) 

 

 
N 

 
Mean  

 
Control Test 

 
Control    Test         p-value 

Nodes Reached 565 561  6.38 8.33 .00 

Activity Attempts per Node 565 561  4.59 3.90 .40 

Avg Time Spent per Node 

(Mins) 

565 561  15.54 13.58 .10 

Subsequent Node Pass Rate 565 561  .33 .39 .01 

Table 2: Summary Data for Accelerate Mode 1st Test: Boss Streak Cohort 



 
N 

 
Mean  

 
Control Test 

 
Control Test p-value 

Nodes Reached 141 140  6.98 11.88 .00 

Activity Attempts per Node 141 140  3.49 1.86 .00 

Avg Time Spent per Node 

(Mins) 

141 140  11.33 6.18 .00 

Subsequent Node Pass Rate 141 140  .45 .53 .14 

Table 3: Summary Data for Accelerate Mode 1st Test: High Pass Rate Cohort 

 

Extended Research and Results 

 
To further our investigation and understanding of how Accelerate Mode impacted learner 

variability and stretching the ZPD, we chose to run a second RCT test with all students 

regardless of past performance. Students who were part of the first RCT test were excluded 

from our second test, resulting in roughly 12,000 students in our second test, with about N = 

6000 per arm. Similar in design to our first test, this test ran for 3 weeks, after which time we 

saw no significant difference in any of our impact metrics between the test and control groups 

(Table 4). That is, students in the test group did not show improved learning speed from the 

Accelerate Mode treatment. As a result, we called the test for the control. 

 

 
N  Mean  

 
Control Test 

 Contro

l 
Test p-value 

Nodes Reached 6,044 6,019  9.54 9.44 .21 

Activity Attempts per Node 6,044 6,019  4.93 4.98 .32 

Avg Time Spent per Node 

(Mins) 

6,044 6,019 

 

14.72 14.83 .38 

Subsequent Node Pass 

Rate 

6,044 6,019 

 

.28 .28 .40 

Table 4: Test Summary for Accelerate Mode 2nd Test 

 

Discussion 

 

In our initial RCT, we identified 2 groups of students who we hypothesized were not working 

in their ZPDs, or at least not at their PoDs. In other words, we believed that in their current 

placement they could learn the requisite LO without the support of an MKO (i.e., they were 



in their ZADs). Our test results strongly supported this hypothesis. Students in the test group 

were able to progress faster and farther through our Knowledge Map without weakened 

performance. Of the test group students who completed at least 1 final assessment activity 

while in the test, 78% passed on their first completed attempt, without Direct Instruction or 

other MKO support. Moreover, 48% of test group students who completed 5 final assessment 

activities passed all 5 on their first completed attempt and another 32% passed 4 out of 5 on 

their first completed attempt. And, while only 22% of test group students completed 20 final 

assessment activities, over 90% of those students passed 16 or more of the activities on their 

first completed attempt. Such strong performance without MKO assistance confirmed that 

these students were working in their ZADs rather than their ZPDs. In addition, as many as 

half of the test group students who did not pass the final assessment activities on the first 

attempt succeeded on their second attempt after receiving direct instruction and varying 

degrees of MKO support. This provided evidence that these students were working at least 

partially in their ZPDs. 

 

Dynamically identifying which Zone of Development a given student is working in at any 

given moment illustrates one of the challenges of a Smart Learning system. That is, the 

system does not know what other instruction a student is receiving outside the system, 

including in a traditional classroom, on other digital tools or products, with a tutor, or 

otherwise. Thus, it is an ongoing effort to identify whether the student is being presented with 

LOs currently in their ZPD versus LOs that were in their ZPD at the time of the initial 

placement assessment but are no longer stretching the learning of the student. Our program 

uses successful completion of an LO’s activities and its prerequisites to determine whether a 

student has reached their ZAD on a given LO. We assume that this status means they are not 

likely to be in their ZID for the next LO. But given the elasticity of individual learners’ ZPDs, 

performance on prerequisites does not indicate whether a student will be in their ZPD or still 

in their ZAD on the next LO. Understanding in which zone the student is operating on any 

given LO provides an opportunity to improve their learning experience with the right level of 

support.  

 

Our analysis of the test group students in our RCT revealed that most students were working 

in their ZADs when the test started and continued to do so through a number of subsequent 

nodes (i.e., they passed final assessment activities without help). While we achieved our goal 

of improving learning efficiency while maintaining efficacy for these students, another goal – 

enabling students who were not learning in their ZPD (i.e., content was too easy) to reach 

their ZPDs – remained. To determine whether we met this goal, we monitored students in 

both the control group and the test group for 6 weeks post-test to assess whether the test 

group reached their ZPDs. We tracked the same metrics used in our original RCT to evaluate 

the hypothesis that test group students would need more time and more attempts to pass the 

final assessment activity on each LO and that pass rates would drop as these students entered 

their ZPDs and approached their PoDs. 

 

Our analysis found that as the test group students progressed through more advanced content, 

they began to make more use of MKO features, indicating that after the initial acceleration, 

they reached and then continued to learn in their ZPDs. Specifically, for the test group 

students, learning speed decreased, more MKO features and attempts were needed, and pass 

rates declined over time, suggesting that students were approaching their PoD and engaging 

in more in-the-moment learning. The ability to identify students not working in their ZPDs 

and, even more importantly, to move them there as quickly as possible, is a valuable finding 



for our program and the broader education community, especially for those developing 

adaptive learning products and models. 

 

Limitations  

 

Our initial RCT included two groups of students, identified with rather specific criteria 

described above. After this test’s success, we hypothesized that there could be other students 

not working in their ZPDs who did not meet either of our eligibility criteria. Since developing 

a comprehensive set of criteria to identify these other students could be challenging, we 

applied the Accelerate Mode treatment to all students to determine whether students already 

working in their ZPDs would not be harmed by the treatment or even could benefit from it. 

  

This second RCT was not a success (Table 4). While the learning pace and performance of 

the test group students did not meaningfully differ from the control group students, this result 

does not imply that no harm was done to students already working in their ZPDs. Our first 

RCT showed that the eligible students (high performers in our system) moved faster under 

the intervention. Thus, to see no difference between the test and control groups in test 2, non-

high-performing students in the test group would have to move more slowly, thereby 

balancing out faster progress by the high performers in the test group. As a result, it is unclear 

that more students reached their ZPDs by starting all students on the final assessment activity 

for each new LO and we rejected this option for finding additional students outside of their 

ZPDs. Exploring further methods to recognize other groups not working in their ZPDs 

remains an important area for future research. 

 

Conclusion 

 

In sum, our Accelerate Mode treatment succeeded in moving test students into their ZPDs. 

However, assigning final assessment activities at the beginning of an LO, even for students 

identified as likely to benefit from this intervention, is somewhat of a blunt instrument. To 

achieve even more efficient student learning, it is necessary to better understand the 

conditions in place when a student enters their ZPD and as they approach their PoD. The 

more we understand about the transition to the ZPD and the approach to the PoD, the more 

we can do to get students there and ultimately increase the pace of their learning. 

 

As described earlier, a critical problem to solve remains devising ways to help students 

become proficient in their grade level expectations as quickly as possible. For the two-thirds 

of students who are a year or more behind, the need to find better ways to foster more 

learning at a faster pace is critical. A major insight that emerged from this study centers on 

how typical pedagogical approaches may or may not support maximum learning efficiency. 

In line with Bloom’s theory of Mastery Learning, many instructional approaches, including 

those deployed in many digital adaptive learning systems, require the learner to successfully 

“pass” an activity without help (i.e., prove mastery) before moving on. However, keeping a 

learner in an activity until they can complete it without help means that at least for some 

portion of the time the learner is working in their ZAD (i.e., learning is not maximized). 

Vygotskyan theory would suggest providing the learner with more ongoing opportunities to 

work at their Point of Difficulty where the most learning can occur. A question to consider is 

whether or not different adaptivity schemes based on stretching each learner’s ZPD to their 

Point of Difficulty may potentially produce more learning gains than strategies that require 

full mastery of every learning objective before moving on. A related exploration would 

include determining the optimal moment to move the learner on to more advanced material 



(i.e., their next Point of Difficulty). While our study helped to shed light on these questions 

and others, it is only a beginning. More research in this area is needed.  
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