
ProctorBox: The Open-Source Operative System Designed to Guarantee

the Integrity & Security of Online Assessments

Roberto D. Solis, Sam Houston State University, United States

Narasimha Shashidhar, Sam Houston State University, United States

Cihan Varol, Sam Houston State University, United States

Amar Rasheed, Sam Houston State University, United States

The IAFOR International Conference on Education in Hawaii 2024

Official Conference Proceedings

Abstract

Computerized proctoring systems play an essential role in protecting the integrity and

security of assessments in several modes of instruction, such as online learning. The most

recent literature focuses on adding features that may impede the student from committing

academic dishonesty and fraud by combining several elements that may protect the integrity

of the remote assessment. The majority of the features we can explore in contemporary

literature are the detection of mobile devices, eye movement tracking, extracting verbal

communication to text, and other complex solutions involving pre-trained models to improve

the efficiency of detecting objects. However, there needs to be an initiative to solve the issue

of academic dishonesty in proctoring systems. Protecting the integrity and security of online

assessments is possible by providing the student with a robust combination of security

measures embedded into an operative system. Therefore, we present ProctorBox, the open-

source platform explicitly engineered to protect the integrity and security of an online

assessment. We implement state-of-the-art security by hardening the system with essential

concepts that work as a synergetic mechanism to impede fraud and academic dishonesty.

First, we obtain the image of an open-source system to eliminate licensing issues and the cost

of the computerized proctoring system. Then, we establish a baseline image of the system by

removing all the unnecessary components that may aid in committing dishonesty. Moreover,

we secure the guest account from executing third-party applications and handle internet

browser security by building a Chromium extension to safeguard the integrity of the online

assessment.

Keywords: Proctoring Systems, Online Assessments, Assessment Integrity, Distance

Education

iafor
The International Academic Forum

www.iafor.org

Introduction

The current proctoring solutions available in the market and the solutions presented by

academics in the most recent literature focus on features that can prevent or make a student

doubt before committing academic dishonesty or cheating in an online examination. Face

detection, eye movement, audio analysis, extraction of voice into text, and detection of

external devices are the most common features in modern proctoring applications. However,

as proved by Solis et al. (2023), A proctoring solution is limited to its built-in functionalities,

and it is possible to bypass such security features with little to no effort on behalf of the

student. Therefore, the security of online assessments goes beyond providing a third-party

application to protect assessment integrity. To ensure the safety and integrity of an online

examination, give the test taker a secure platform capable of halting any attempts to commit

academic dishonesty and fraud on an online assessment.

Therefore, ProctorBox follows rigorous principles such as system hardening, the least

privilege, and state-of-the-art browser security to prevent malicious activity while an online

exam is in session. ProctorBox is aimed to limit the functionalities and access to external

resources that a student can have during an examination, thus, reducing the opportunities to

cheat in an online test. ProctorBox is a groundbreaking open-source operating system

designed explicitly to assure any faculty member of the integrity of any online examination.

The open-source nature of our platform gives it a significant edge, promoting transparency

and abiding by the most rigorous academic standards. Nonetheless, our robust platform

allows the system owner to add or remove any necessary applications that an assessment

may require. The portability and user-friendly interface let students take an assessment

effortlessly, making the examination process as seamless and secure as possible.

To showcase the security, integrity, and effectiveness of ProctorBox, we follow rigorous

security standards to harden our portable operating system. Our baseline distribution

contains no unnecessary applications, making it impossible for the student to commit

dishonesty. Moreover, the system can handle user switching, allowing faculty members to

add necessary features to the guest account. These features can be accessed by third-party

applications provided by our Debian-based system. Moreover, we offer a trailblazing

browser security mechanism by implementing a custom browser extension with the ability

to block the left click on any window, and that allows only one active tab at a time. In

addition, we are pioneers in the academic industry in offering students a complete

proctoring platform at no cost. ProctorBox is proven to work on the leading hardware

architectures, such as AMD and Intel processors, making it superior to any proprietary

proctoring solution available.

Literature Review

Saurav et al. (2021) present a proctoring system that leverages AI features to detect cheating

in online examinations. The method comprises seven elements working synergistically by

collecting low-level information from each feature. Then, the data is analyzed on a

secondary window to identify traits that may lead to cheating. The first component is user

verification and facial landmarks detection. The second feature is composed of eye-tracking

components that are based on coordinate points. The third feature detects whether the test

taker opens their mouth while an examination progresses. The fourth component is a trained

model capable of detecting other devices in use during the examination. The fifth feature,

head pose detection, identifies whether the test taker is looking at a secondary device. The

sixth component, tab switching, is built into Java script so the student does not require

additional software. The last component is voice detection, which monitors and extracts

audio, which is then converted to text using Google Speech Recognition.

Although we can see significant use of AI technology in exam proctoring, the authors must

realize how feasible this proposed model can be at a larger scale. Moreover, we need to find

out where the exam is hosted. For example, it would be ideal to know if the proposed

system can support modern learning management systems such as Blackboard, Moodle, or

Canvas. On the other hand, it would be more beneficial to see a chart to examine the

efficiency of such a model.

Ganidisastra and Bandung (2021) propose using a fully automated proctoring system using

face recognition to solve the need for continuous user verification while the student is

taking an examination. The model consists of grabbing images that are captured at the same

time when the lecture is taking place. The incremental training consists of two deep

learning models: multi-task cascaded convoluted network and YOLO-face. The two

proposed methods demonstrate a higher performance under different conditions, such as

low light and alternative poses. The process starts by capturing the student’s identity for

registration. An image of the student is captured using a mobile device. The system requires

several angles of the student, such as front view, left view, right view, and so on. The

incremental training occurs at the end of each lecture session once a new data set is

collected. The results show that the two proposed models, multi-task cascaded convoluted

network and YOLO-face, perform better over viola-jones and LBP, which are also utilized

for face detection model processing images as a batch.

While the proposed model requires incremental training for improvement and better

performance, it will fail under certain circumstances. For example, lectures that are taken

place in large auditoriums will most likely cause students to switch positions during lecture

time. Also, if the model requires continuous snapshots of the student using different angles,

this will result in less lecture time and consume considerable time. Nonetheless, it is a

reasonable effort in automated proctoring systems that require continuous user verification.

Madhusudan et al. (2022) developed a proctoring system to fulfill the needs and wants of

current automated proctoring solutions. The system utilizes several multimedia features

such as face recognition and capturing of objects such as mobile devices. The plan aims to

eliminate the traditional pen-and-paper examination and remove the human factor from an

online exam; in this example, a proctor is nonexistent to reduce the cost of proctoring a test.

The proposed system consists of a website with two separate logins. One login pertains to

the student, and the second login screen belongs to the faculty member. The system can

allow the faculty member to generate exams. After that, a unique key is generated, which is

then given to the student along with a password to access the exam. A text editor shows

when a mobile device is detected to capture discrepancies during the online examination.

Moreover, a warning is also displayed to the student if the test taker attempts to switch tabs.

Some of the limitations of the proposed system are the use of proper lighting during

registration, which may cause improper face detection. Also, a minimum distance is

required between the webcam and the student.

The features implemented in this multimedia proctoring system are good features to

consider reducing the cost of proctoring software. However, as a faculty member, there is

no clear evidence of a student intending to cheat since all the evidence is based on text. A

student can build a case based on these observations and appeal that no intent of cheating

occurred during an examination. Furthermore, the faculty members may question the

system’s performance if several flags happen during an examination session.

Padilla et al. (2021) proposed a cloud-based system to manage remote proctoring of

examinations. The method comprises several AWS features such as Dynamo DB, S3,

Lambda functions, Cloudfront, and API Gateways. The remote proctoring software shall

consist of two applications, one for faculty members and a front end for the students.

Moreover, there is an additional machine-learning component capable of detecting head

movements during the examination, which are recorded as notifications for playback. An

examination was given to thirty students to test the system's performance. Then, the exam

was accompanied by a post-assessment survey to measure the system’s effectiveness. Of a

sample of the thirty students, twenty-one admitted some cheating or plagiarism. However,

the system could identify a different group of five students who also committed some

plagiarism.

The features presented in this work and the type of technology implemented meet the

current demands of proctoring solutions. This is a platform that proved to be efficient and

that has excellent performance to detect cheating or plagiarism. However, a critical factor

should have been considered, which is the security of the test taker system. The security

features in this system, which is meant to run in Windows distributions, can quickly be

canceled with a remote desktop connection to the test-taker machine. This will create no

alerts for the faculty since the student will have the proper head placement during the

examination. However, the faculty will not be aware that a person is taking the test remotely

on behalf of the student.

Abozaid and Atia (2022) offer a semi-automated proctoring solution with three main

features: head-pose, a feature that locates the head movement of an individual using

computer vision technology. The second component, object detection, is used to identify

resources not allowed during an examination, such as phones, persons, and books. The third

component, eye-gazing, is used to track the position of the eyes during an investigation. The

system captures a picture of the student at an interval of every ten seconds. Then, the image

is processed, and a report is generated for the faculty member if an abnormality is found.

Four different experiments validated the effectiveness of this proposed solution. The first

experiment was composed of head pose testing, and the VGG16 model had the highest

accuracy. A second experiment was done to test the efficacy of the three features separately.

The overall accuracy was 96.66%. The third and last experiment involved students doing

different activities to simulate cheating.

Overall, the proposed multi-modal system has exciting features that can minimize the

efforts of having a proctor in person and reduce the cost of a proctoring solution. However,

the testing was done following a strict set of parameters given to the students. On the other

hand, it would be ideal to include detailed screenshots of the report generated once an event

is captured by one of the three features. Moreover, it would be great to know how the video

is stored and processed on the back end so that faculty can rely on playback if necessary.

Grigoriev (2022) presents a detailed review of the market's most popular proctoring

solutions and briefly describes each system's flaws. However, a method is implemented to

improve the current proctoring solutions with four distinct functionalities. To detect

abnormalities during the examination, the first component uses YOLOv3, a model

frequently used in proctoring solutions to detect objects such as mobile devices and more

than one person. The second component, which detects abnormalities in the audio, uses

FFmpeg. This feature depends on the DB levels captured during the testing session to see if

cheating is happening. Moreover, the feed from the audio is converted to text using Google

Speech Recognition API, which gives the proctor a list of the most used words. The third

component is to detect abnormalities in the test taker’s desktop. As discussed in the first

component, this feature also utilizes a model based on convolutional neural networks to

identify social media platforms, calculators, or additional software not allowed during the

examination. The final component is a control to reduce the system’s false positives. This

final module provides the proctor with a time interval of the video along with a description

of the violation committed during the session.

Although the solution is meant to improve the flaws of modern proctoring solutions

available in the market, each of the features of the system has been presented by other

authors using the same convolutional network models. The only district feature which

makes this solution unique is the ability to detect abnormalities based on the DB levels

captured during an examination. Furthermore, it would be ideal for reviewing the system's

performance on a larger scale and observing if it can simultaneously process multimedia

from several sessions.

Malhotra et al. (2022) leverage artificial intelligence to implement a proctoring system that

eliminates needing a physical proctor in the room. Three essential components make this

system possible. The first component is emotion detection. This feature is possible by using

convolutional neural networks. According to their model, emotion detection can predict if

the student commits fraud during the examination. The second component of this system is

head pose movement. This feature measures 0 to 90 degrees at angles when motion is

detected. As a starting point, the student starts at an angle of 0. The model uses six facial

points, which are then converted to coordinates. The third and last feature is malicious

object detection, which was used in previous work. The model is based on YOLOv3 and

can detect objects such as people, mobile devices, and books. This combination of models

can aid in identifying if fraud or cheating is committed in an online examination.

Overall, the system uses three essential features that have been in use by several authors.

However, the head pose movement feature has yet to be seen as detailed as the one

presented in this work. Getting more details on this model's efficacy in a real-world

environment would be ideal. There is no additional data to support the efficiency of this

model. Moreover, it would be excellent also to include different steps on how it would be

possible to scale this solution to support multiple exam sessions at any given time.

Definitions and Tools

Definitions

• Integrity – The state of being whole, entire, or undiminished (Dictionary.com, 2019).

• Least Privilege – The principle that a security architecture should be designed so that

each entity is granted the minimum system resources and authorizations needed to

perform its functions (Editor, n.d.).

• Proctor – US (in a college or university) a supervisor or monitor who invigilates

examinations, enforces discipline, etc. (Definition of Proctor | Dictionary.com,

2019).

• Open-Source – Pertaining to or denoting software whose source code is available

free of charge to the public to use, copy, modify, sublicense, or distribute (Open-

Source Definition & Meaning, n.d.).

• Operating System – The collection of software that directs a computer’s operation

controlling and scheduling the execution of other programs, and managing storage,

input/output, and communication resources (Definition of Operating System |

Dictionary.com, n.d.).

• System Hardening – A process intended to eliminate a means of attack by patching

vulnerabilities and turning off nonessential services (Editor, n.d.-a).

Tools

• Chromium Browser – The foundation of our trailblazing browser security relies on

altering certain browser functions and behaviors, such as enabling only one tab at a

time and turning off the right click. To make this happen, our Slax distribution is

optimized to run the latest stable version of the Chromium browser, which is open

source. Our custom Chromium extension provides the necessary browser-level

security to assure the integrity of any online examination (The Chromium Projects,

n.d.).

• LXDE – Desktop environment used to disable Fluxbox, the default built-in

application that runs on any Slax distribution (LXDE, n.d.).

• LXDM – The installation of LXDM is necessary to void the auto-login function in

Slax. Also, it allows user-switching without any conflicts (LXDM - ArchWiki, n.d.).

• Slax – To provide the test taker with a state-of-the-art secure platform, ProctorBox

utilizes the Debian-Based Slax distribution, which is open source, and its design

allows the system owner to customize the distribution by turning modules on and

off. Slax is stored on a USB drive, and all the system changes are persistent (M,

n.d.).

• USB Drive – A USB drive is required to store and boot the ProctorBox system on

the student machine.

• AMD or Intel computer system – To test the effectiveness and efficiency of

ProctorBox, a baseline image of the system was loaded on both hardware

architectures. The system is proven to run on computer systems with AMD and Intel

processors.

Methodology

ProctorBox aims to achieve maximum security and integrity when it is time to proctor an

online assessment. We abide by the most rigorous guidelines to comply with all the

requirements to restrict academic dishonesty while maintaining academic integrity. Our

leading goal is to make ProctorBox a lightweight and user-friendly platform. We achieve this

requirement by obtaining a baseline image of the Slax distribution and applying cyber

security concepts such as least privilege, system hardening, and securing the system using

only two accounts. The root account is meant for system owners, which in this case is the

faculty member. The root account can install new applications and load new modules. On the

other hand, the secondary account is the guest account, which has access to a network

manager, the Chromium browser, and our custom browser extension. We looked deeply at all

baseline software and removed unnecessary tools from the system.

Obtaining a Baseline System Image

The first step was to compare all open-source operating systems that require minimum

hardware resources to run on any student machine, preferably any Linux distribution. The

idea behind adopting a Linux distribution is to eliminate the proctoring cost to the student and

to keep this project open-source for the academic community. After extensive trial and error

with several Linux distributions, we adopted Slax for the foundation of our project. Slax is

offered in two different architectures, a 32-bit version, and a 64-bit version. Nowadays, all

computer systems are based on a 64-bit architecture. Therefore, we opted for a 64-bit

architecture based on the Debian distribution.

Figure 1: Slax distributions available to the public.

Preparing Our USB Drive for the First Time

Our next step is to prepare the USB drive to store and boot the Slax distribution for the first

time. Formatting the target drive using the FAT32 file system is essential. Choosing any other

type of file system will make the boot process fail. This concept applies to both Intel and

AMD computer systems. Next, we must copy the file’s contents obtained in Figure one and

paste the complete folder into our target drive. Once the files are moved to our target drive,

we must navigate to the Slax folder and double-click the boot directory to access the boot

files. Now, we must locate the bootinst file and run it as administrator on our Windows

system. Once the process is complete, the green screen will indicate to press any key to exit.

At this point, the target USB drive is ready to boot Slax for the first time. Some computers

may require additional modifications to the BIOS. Restart the PC and press the appropriate

keys to launch the boot menu. From the boot menu, select the USB drive.

Figure 2: Making our bootable USB drive.

Connecting to the Network

Note that after a successful boot for the first time, Slax does not require a username and

password and has an automatic login function to the root account. We will modify this

process in the following steps. At this point, we need to download the necessary applications

for the Slax distribution. From the start menu, launch the Net Manager application, select

wireless, choose your home network, and enter the passphrase for your network.

Figure 3: Connecting Slax to the Network.

Changing the Default Root Password

It is time to take ownership of our custom Slax distribution. To make this happen, click on the

start menu, and select ‘Terminal.’ A prompt will open to enter the desired commands. By

default, Slax has an automatic login to the root account, and the password is visible during

boot time. We want to prevent students from making changes as root. Therefore, enter passwd

in the terminal and press the enter key. This action will prompt us to enter the new password

to the root account. For testing purposes, the root password is ‘shsu.’

Figure 4: Changing the default root password using the passwd command.

Installing Chromium Browser From the Terminal

By default, it is possible to install Chromium using the shortcut under the start menu.

However, the installation process may fail due to unexpected versions. It is best to use the

command apt-get install chromium/stable to solve this problem. Once the process is

complete, we can test that chromium is working. Note that any changes made to chromium as

root will transfer to the guest account.

Figure 5: Installing Chromium Browser From the Terminal.

Installing a Desktop Environment for the Guest Account

Another default setting in Slax is the desktop environment. As a default setting, Slax uses

Fluxbox as the desktop environment. By default, Fluxbox is limited in options and does not

allow features such as a login screen, user switching, and a custom desktop environment.

Attempting to log in with the guest account, which is built-in by default, will give us a blank

desktop with no applications available. Several desktop environments exist, such as GNOME,

KDE, & Xfe. To proceed with installing LXDE, launch a terminal window and type the

command apt-get install lxde.

Figure 6: Installing LXDE From the Terminal.

Installing a Display Manager for our System

We must incorporate a separate display manager to prevent the auto login feature as root.

LXDM can handle user switching without conflicts. Also, this feature manages the users and

goes along with LXDE. Moreover, the root account is hidden from the login screen, and the

student will only see the Guest account. To install LXDM, launch a terminal window and

type the command apt-get install lxdm. We are still logged in as root. Once the installation of

LXDM is complete, restart the system for the first time. At this point, the autologin function

as root has been turned off by installing LXDM. Now, upon a restart, we are presented with a

login screen. By default, the ‘Guest’ user is shown; we can click ‘more’ and manually type

any desired user. To continue our setup, click ‘More’ and type ‘root’ as the user. It is essential

to notice how the desktop is set below the user selection box as ‘Default.’ From now on, the

student must log in using the guest account with the default password of ‘guest.’ And with the

desktop setting set to ‘Default.’

Figure 7: Installing LXDM From the Terminal.

Figure 8: Guest Account log in with the desktop environment ‘Default.’

Log in as Root and Remove Unnecessary Applications From the System

To continue setting up our environment, we must log in to the system as root. It is essential to

notice how the root account is strictly tied to the ‘Fluxbox desktop, unlike the guest account,

which must use the default desktop environment.

Figure 9: Root Account log in with the desktop environment ‘Fluxbox.’

Upon logging in as root with the Fluxbox desktop, we can use the file explorer to navigate

into the following directory: /usr/share/applications. Once we locate the directory, we will see

several applications, such as a text editor, a terminal emulator, a calculator, etc. Each

application is a shortcut to the executable file under the /bin directory. We can delete the

shortcut from /usr/share/applications and its corresponding binary. Doing so may damage the

display manager settings and the desktop environment manager. After intensive testing, we

concluded that leaving the binary files intact is best. Moreover, the applications folder

comprises the applications available to the guest user. To prevent any act of academic

misconduct during testing, we decided to give access to the web browser only, along with

some display manager settings. We can log out from the root account and log in with the

guest profile to see what has been made available for the guest account, which is the account

that will be utilized for testing.

Figure 10: /usr/share/applications directory

Implementing Browser-Level Security

Now that the system meets our desired requirements, it is time to work on the browser-level

security before making the changes permanent. To accomplish this task, the best approach is

to build a Chromium extension with two basic functionalities. The first task of the Chromium

extension is to turn off the right click; this will prevent the student from having access to the

context menu, which may facilitate academic dishonesty during an examination. The second

function of our Chromium extension is to allow only one tab at a time. One tab only aims to

take full advantage of the exam logs provided by our learning management systems. The

higher ed market is compromised by Blackboard and Canvas users. Each time an assessment

takes place, the learning management system provides full logs until the student submits an

exam. Therefore, by allowing only one tab at a time, we can read the logs and identify if there

was a period when the student started another session. Moreover, we discovered that the one-

tab limit prevents the student from opening the settings in Chromium.

Figure 11: ProctorBox Chromium Extension

Figure 11 represents the root folder of our Chromium extension. The icons folder inside the

root contains the required extension icons. Next, the js folder has the two scripts that handle

the extension’s behavior. In this case, there is a script to turn off the right click and another

script to allow only one tab at a time. Finally, we have manifest.json file, which contains all

the configurations for the ProctorBox extension. To access this folder and its content, log in

to the system as root and navigate to /usr/share/applications. A copy of the folder is located

there and has been loaded into Chromium for the root and guest accounts.

Building the ProctorBox Module to Make the Changes Permanent.

Now that the system has met all our requirements, we can make the changes permanently by

creating a module. Note for future system owners, you will use the savechanges command

anytime you make any adjustments to the ProctorBox system. To start the process, click the

start menu and launch the terminal. Once the terminal appears, type the command

savechanges /tmp/proctorbox.sb. The purpose of this command is to create the proctorbox.sb

module under the /tmp folder. A progress bar will appear after a few seconds. Please wait for

this process to finish before any other system modifications. Once the savechanges command

is complete, locate the file in the /tmp directory and click copy. Now, Paste the proctorbox.sb

module into /sda1/slax/modules directory.

Figure 12: Creating the ProctorBox Module from Terminal.

Preparing ProctorBox for Distribution.

We can start distributing our ProctorBox platform to the public, end users, students, and

system owners, and the process is simple. Go back to your Windows PC and plug in the

proctor box USB drive that contains the proctobox.sb module. Prepare a secondary blank

drive similar to the process we completed in Figure 2. Once the drive has been formatted,

paste the two folders ‘EFI’ & ‘slax’ into the root directory of your blank drive. Finally, on

your new target drive, navigate to /slax/boot and run the bootinst file to prepare our new

target drive for boot.

Conclusion and Future Work

ProctorBox represents a significant leap in computerized proctoring applications and

platforms, serving as a benchmark for the integrity and security of online examinations. The

open-source nature of our platform empowers a global community of academics to constantly

contribute to its evolution resulting in an ever-improving, robust proctoring platform that can

effectively meet the demands of modern distance learning education. From advanced

proctoring features such as trailblazing browser security to its intuitive user interface

ProctorBox caters to educators and students alike, promoting an environment of fairness and

ease. Moreover, ProctorBox is not just a proctoring platform but a pioneer in offering no-cost

proctoring to students worldwide. Our unparalleled scalability and interoperability make

ProctorBox a leading platform for online examinations, setting the gold standard for secure,

fair, and transparent online examinations.

References

Abozaid, A. M., & Atia, A. (2022). Multi-Modal Online Exam Cheating Detection.

International Conference on Electrical, Computer and Energy Technologies

(ICECET). https://doi.org/10.1109/icecet55527.2022.9873527

Alfredo Barrientos Padilla, Cuadros, M. A., Alba, J., & Becerra, A. (2021). Implement a

remote system for the supervision of online exams through cameras with artificial

intelligence. https://doi.org/10.1109/eircon52903.2021.9613352

The Chromium Projects. (n.d.). Www.chromium.org.

https://www.chromium.org/chromium-projects/

Definition of operating system | Dictionary.com. (n.d.). Www.dictionary.com. Retrieved

June 1, 2023, from https://www.dictionary.com/browse/operating-system

Definition of proctor | Dictionary.com. (2019). Www.dictionary.com.

https://www.dictionary.com/browse/proctor

Dictionary.com. (2019). Definition of Integrity | Dictionary.com. Www.dictionary.com.

https://www.dictionary.com/browse/integrity

Editor, C. C. (n.d.-a). Hardening - Glossary | CSRC. Csrc.nist.gov. Retrieved June 1, 2023,

from https://csrc.nist.gov/glossary/term/Hardening

Editor, C. C. (n.d.-b). least privilege - Glossary | CSRC. Csrc.nist.gov. Retrieved June 1,

2023, from https://csrc.nist.gov/glossary/term/least_privilege

Ganidisastra, A. H. S., & Bandung, Y. (2021, April 1). An Incremental Training on Deep

Learning Face Recognition for M-Learning Online Exam Proctoring. IEEE Xplore.

https://doi.org/10.1109/APWiMob51111.2021.9435232

Grigoriev, I. S. (2022). Service for Monitoring and Control of Remote Testing by Video

Information. https://doi.org/10.1109/scm55405.2022.9794842

LXDE. (n.d.). Www.lxde.org. Retrieved June 1, 2023, from http://www.lxde.org/

LXDM - ArchWiki. (n.d.). Wiki.archlinux.org. Retrieved June 1, 2023, from

https://wiki.archlinux.org/title/LXDM

M, T. (n.d.). Slax Linux - your pocket operating system. Www.slax.org. Retrieved June 1,

2023, from https://www.slax.org/

Madhusudan, Godbole, S., Meshram, H., & Joshi, J. (2022, May 1). Automated Exam

Proctoring using a Support Vector Machine and Histogram of Oriented Gradients.

IEEE Xplore. https://doi.org/10.1109/ICAAIC53929.2022.9792952

Malhotra, N., Suri, R., Verma, P., & Kumar, R. (2022, February 1). Smart Artificial

Intelligence-Based Online Proctoring System. IEEE Xplore.

https://doi.org/10.1109/DELCON54057.2022.9753313

Open-source Definition & Meaning. (n.d.). Dictionary.com. Retrieved June 1, 2023, from

https://www.dictionary.com/browse/open-source

Shakti Priya Saurav, PANDEY, P., Sharma, S., Pandey, B. K., & Kumar, R. (2021). AI-

Based Proctoring. 2021 3rd International Conference on Advances in Computing,

Communication Control and Networking (ICAC3N).

https://doi.org/10.1109/icac3n53548.2021.9725547

Solis, R. D., Narasimha Shashidhar, & Cihan Varol. (2023). Automated Proctoring

Solutions: Modern Techniques to Evade and Lure Computerized Proctoring

Systems. https://doi.org/10.22492/issn.2189-1036.2023.30

Contact emails: rds050@shsu.edu

 nks001@shsu.edu

 cxv007@shsu.edu

 axr249@shsu.edu

	Abstract
	Computerized proctoring systems play an essential role in protecting the integrity and security of assessments in several modes of instruction, such as online learning. The most recent literature focuses on adding features that may impede the student ...
	Introduction
	Literature Review
	Definitions
	Tools

	Methodology
	ProctorBox aims to achieve maximum security and integrity when it is time to proctor an online assessment. We abide by the most rigorous guidelines to comply with all the requirements to restrict academic dishonesty while maintaining academic integrit...
	Obtaining a Baseline System Image
	The first step was to compare all open-source operating systems that require minimum hardware resources to run on any student machine, preferably any Linux distribution. The idea behind adopting a Linux distribution is to eliminate the proctoring cost...

	Conclusion and Future Work
	ProctorBox represents a significant leap in computerized proctoring applications and platforms, serving as a benchmark for the integrity and security of online examinations. The open-source nature of our platform empowers a global community of academi...

