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Abstract 
The purpose of this study was to synthesize qualitative research findings about 
mathematical modeling at the high school and college levels focusing on the inquiry 
processes applied during modeling. A total of 19 primary studies published in peer-
reviewed journals between January 1, 2000, and February 28, 2013, with a total of 
1,290 subjects met the inclusion criteria.  
 
The research findings revealed that mathematical modeling can enhance students’ 
problem solving techniques and that it has a potential to be supported by scientific 
inquiry methods. As such, this paper can be of interest to mathematics curriculum 
designers and practitioners who seek ways of integrating the methods of mathematics 
with other disciplines.  
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Introduction 
 
Mathematical modeling (MM) has been described diversely; for instance, Lesh and 
Harel (2003) defined MM as finding patterns and quantifying and generalization of a 
phenomenon, while Blum, Galbraith, Henn, and Niss (2007) defined MM as a process 
of “learning mathematics so as to develop competency in applying mathematics and 
building mathematical models for areas and purposes that are basically extra-
mathematical” (p. 5). Modeling processes constitute central methods of science 
knowledge acquisition (Schwarz & White, 2005). Modeling provides a means for 
analyzing data, formulating theories—often expressed in symbolic mathematical 
forms—and testing those theories.  
 
As such, learning via modeling plays a vital role in developing students’ skills in both 
science classes (Wells, Hastens, & Swackhamer, 1995) and mathematics classes, 
especially during problem solving (Lesh & Harel, 2003). One of the many advantages 
of modeling, as compared to problem solving, is shifting the learning focus from 
finding unique solutions to enhancing solution process skills through transforming 
and interpreting information, constructing models, and verifying the models (Lim, 
Tso, & Lin, 2009). One of the obstacles to adopting such inquiry-based learning in 
mathematics is the gap between problem solving in mathematics and inquiry in 
science (Schoenfeld & Kilpatrick, 2013).  
 
The purpose of this research was to synthesize findings of studies that immersed 
students in modeling activities defined as finding patterns, generalizing the patterns, 
and expressing the patterns using mathematical apparatus and search for ways of 
merging the process of mathematical modeling with scientific inquiry methods. 

 
Theoretical Background  
 
Pinar (2004) contended that interdisciplinary curriculum fosters intellectual 
development and students’ capacities for critical thinking, while Kelly (1989) 
maintained that to acquire knowledge is to experience, observe, and form hypotheses. 
Dewey (1997) suggested that learning results from action and practical consequences 
of real effects that are vital components of meaning and truth in education, and 
defined learning as a process in which experience is the motor for new knowledge 
guided by inquiry.  
 
Ernest (1998) claimed that many concepts of mathematics are derived by direct 
experience of the physical world, by generalization and reflective abstraction of 
previously constructed concepts, by negotiating meanings with others during 
discourse, or by some combination of these means. Piaget (1964) contended that 
physical knowledge and logico-mathematical knowledge are learned simultaneously; 
when physical characteristics are learned, mathematical knowledge is used to quantify 
the characteristics and vice versa. 
 
What makes science and mathematics conjoint disciplines? Multiple opportunities of 
integrating the methods of mathematics and other disciplines set the foundation for a 
curriculum that reflects a complex field of scholarly inquiry that endeavors to 
understand concepts across school subjects and academic disciplines (Kelly, 1989). 
As science guides the search for patterns and their qualitative explanations, 



 

mathematics guides the search for describing and explaining the patterns using 
quantity, size, and shape, which illustrates why these two disciplines are conjoined 
(Yore, Pimm, & Tuan, 2007).  
 
Natural phenomena cannot be completely apprehended without the tools of 
mathematics, and the purpose of studying mathematics intensifies when mathematics 
is used to analyze rich scientific contexts. Mathematics helps model empirical data 
and formulate them as timeless and universal representations (Sokolowski, Yalvac, & 
Loving, 2011). However, in order to have mathematics students appreciate all aspects 
of such inquiry, they need to be immersed in meaningful learning environments that 
provide opportunities not only for evaluating abstract mathematical representations 
but also for formulating hypotheses and validating derived models in new modified 
situations. 
 
The process of  MM was first introduced into mathematics classrooms about four 
decades ago (Pollak, 1978), and its effects on mathematics education research have 
been increasing (Blum & Leiss, 2007). By promoting transfer of knowledge, problem 
solving, and scientific thinking (Kuhn, 2007), the original ultimate goal of 
mathematical modeling was to bridge the gap between reasoning in a mathematics 
class and reasoning about a situation in the real world (Blum, Galbraith, Henn, & Niss, 
2007). Over the years, the descriptions of mathematical modeling have undergone 
many modifications, ranging from deductively situated authentic problem modeling 
activities seeking unique solutions to given problems (English & Sriraman, 2010) to 
inductively organized inquiries leading students to find general patterns and express 
the patterns using the tools of mathematics (Lesh & Zawojewski, 2007).  
 
Modeling offers a systematic way of understanding and working with the relationship 
between mathematics and problem situations or phenomena in other disciplines 
(Artigue & Blomhøj, 2013). The products of MM; elicited models, can take various 
forms, ranging from physical objects (e.g., solids or plane figures) to mathematized 
statistical models, functions, or differential equations.  Mathematical modeling that 
utilizes real scenarios and leads learners to a pattern formulation is often classified as 
an exploratory type of learning (Thomas & Young, 2011). As such, multifaceted 
cognitive goals are achieved by learners undertaking modeling activities. Bleich, 
Ledford, Hawley, Polly, and Orrill (2006) claimed that such activities (a) expand 
students’ views of mathematics by integrating math with other disciplines, especially 
science; and (b) engage students in the process of mathematization of real phenomena.  
 
Problem solving and MM and are interwoven. While problem is defined as a situation 
carrying open questions (Blum & Niss, 1991), mathematical modeling is a process of 
moving from a real-world situation to a model, and then using the model to further 
understand and develop new knowledge or solve real-world problems (Crouch & 
Haines, 2004). Thus, the contexts of problem solving and modeling are tightly 
integrated. A major contribution to problem solving was made by Polya (1957), who 
formulated four stages of the process: understanding the problem, devising a plan, 
carrying out the plan, and looking back.  
 
 
 



 

This sequence was further extended and redefined by Bransford and Stein (1984), 
whose model included the stages of identifying the problem, defining goals, exploring 
possible stages, anticipating outcomes, and looking back and learning. According to 
Arthur and Nance (2007), the stage of exploration, which leads the solver to model 
formulation and validation, is one of the most important in the process of problem 
solving. 
 
Modeling is a core practice in science and a central part of scientific literacy (Schwarz 
et al., 2009). Situation, model, and analysis of the model are thereby also essential 
elements of scientific modeling. An important unanswered question is the following: 
Should scientific elements remain silent in math modeling activities, as they do in the 
current literature, or should they be incorporated to produce coherent methods that 
students should be able to transfer and apply in their mathematics classes, as is 
suggested by curriculum theorists?   
 
This section provides insight into how scientific inquiry is organized. The Oxford 
English Dictionary defines scientific method as “a method or procedure that consists 
of systematic observation, measurement, experiment, the formulation, testing, and 
modification of hypotheses” (Scientific Method, n.d.), whereas the National Science 
Education Standards (NSES; National Research Council, 2000) define scientific 
inquiry as a way in which scientists study the natural world and propose explanations 
based on the evidence derived from their work. Scientific inquiry not only reflects on 
how scientists explain the phenomena occurring in the natural world but also gets at 
the heart of how students learn (Sandoval, 2005).  
 
While scientific inquiry defines ways of investigating natural phenomena, scientific 
methods encompass techniques of such analysis (Hestens, 2013). The NSES identify 
five elements of inquiry methods for teaching and learning; learners must (a) be 
engaged in two types of questions: existence (why?) or casual (how?) scientifically 
oriented questions; (b) give priority to evidence by observing and measuring; (c) 
formulate explanations from evidence to address hypotheses; (d) evaluate their 
explanations; and (e) communicate and justify their proposed explanations. In sum, in 
order to be termed scientific, a method must be based on empirical and measurable 
evidence followed by hypothesis stating, evidence gathering, model formulating, and 
testing. 
 
Findings of Prior Research 

 
Although mathematical modeling was implemented in mathematics education several 
decades ago, its contribution to mathematics education research has gained 
momentum recently. This section synthesizes major findings from prior studies. In 
supporting the objectives of this study, we searched for research using ERIC (Ebsco), 
Educational Full Text (Wilson), Professional Development Collection, ProQuest 
Educational Journals, Science Direct, and Google Scholar. Although several research 
studies aimed at various aspects of conceptualization of mathematics ideas were 
located, a synthesis of qualitative research pertaining to mathematical modeling was 
not found. The lack of such studies further supports the need for undertaking a 
qualitative study on mathematical modeling. 
 



 

Research has shown a positive connection between mathematical modeling and 
learning outcomes. For example, research conducted by McBride and Silverman 
(1991) revealed that mathematical modeling used during integrated lessons increased 
student achievement in all involved subjects. Research has also identified several 
pitfalls connected to mathematical modeling that educators must consider. Zbiek and 
Conner (2006) questioned whether the skills of mathematical modeling should be 
considered as separate assessment items. The research reported positive effects on 
student learning when contexts were used to enhance math learning objectives. As 
cognitive and affective effects on students’ math knowledge and aptitude are well 
exploited and researched, the literature revealed several unanswered questions and 
unresolved issues regarding instrumental implementation of this learning method in 
school mathematics along with its relation to science. This study, described in detail 
next, attempted to answer some of these questions.  
 
Method 
 
The analysis of the pool was guided by a systematic classification process of coding 
and identifying themes and patterns as described by Hsieh & Shannon (2005) 
focusing on the development and evaluation of the elicited models formulated by 
learners.  
 
As an emerging method of mathematical knowledge acquisition, MM that uses 
exploratory environments still faces unresolved issues that prevent the methodology 
of framework design from solidifying. Guided by the conceptual framework, the 
following research questions emerged:  
 
How do currently used mathematical modeling activities reflect on scientific inquiry 
methods when used in mathematics classes?   
 
What is the role of mathematical modeling in problem solving?   
 
While the answer to the first research question might provide prompts for a possible 
modification of the currently used modeling cycles, the answer to the second one will 
generate means for identifying areas where both can merge. In the attempt to more 
comprehensively answer these questions, other auxiliary themes were considered: 
Should mathematical modeling be limited to just formulating mathematical 
representations, or should mathematical modeling be perceived as a bridge linking 
mathematics with other academia and provide more opportunities for enhancing 
students’ scientific inquiry skills? What phases of mathematical modeling help 
students improve their problem-solving skills and enrich their techniques of 
formulating solution designs?  
 
 
 
 
 
 
 
 



 

Several key terms were formulated to guide the systematic literature review. The 
terms are summarized in Table 1.  
 
Table 1: Summary of Key Terms Used to Locate and Scrutinize the Research Pool 
 

 
 
In the process of collecting the research literature, ERIC (Ebsco), Educational Full 
Text (Wilson), Professional Development Collection, and ProQuest educational 
journals, as well as Science Direct, Google Scholar, and other resources available 
through the university library, were used. The following terms and their combinations 
were utilized to locate the relevant literature: mathematical modeling, model-eliciting 
activities, simulations, computers and mathematics modeling, inquiry in mathematics 
learning, student achievement, high school, and college. These search criteria returned 
145 articles. A review revealed that eight of these research studies satisfied the criteria.  
 
The majority of the rejected studies focused on examining formulated models in the 
professional fields of engineering or medicine, and some represented position papers 
on modeling. In order to increase the pool, a further search was undertaken with 
broader conceptual definitions.  
 
This search included auxiliary terms that were found in descriptions of mathematical 
modeling activities, such as investigations in mathematics, exploratory learning in 
mathematics, and computerized animations and learning. These modifications 
returned 37 research papers. After additional scrutiny, 11 more studies were coded as 
satisfying the research criteria. In total, the meta- analysis included 19 primary studies, 
out of which four were conducted using mixed research design.  
	  
 
 
 
 
 
 
 
 



 

Descriptive Analysis of the Pool of Studies 
 
This analysis encompasses findings conducted with 1,256 students at the high school 
and college levels.  Several evaluation instruments were used in the qualitative 
research analyzed, including interviews with participants, surveys, observations, and 
questionnaires.  
 
The sample sizes of the research pool ranged from three subjects (Cory & Garofalo, 
2011) to 228 subjects (Leutner, 2002); the average sample size was 60 subjects. When 
categorized by school level, 14 of the studies (or 74%) were conducted on the college 
level and involved mainly calculus students, and four (or 21%) were conducted at the 
high school level. Four studies (or 21%) were conducted at the college level and 
involved students from teacher preparatory programs (e.g., Carrejo & Marshall, 2007; 
Türker et al., 2010).  
 
This trend indicates that preparing teachers to teach students modeling techniques has 
gained popularity in mathematics education. Considering the ratios of the populations, 
it is evident that the interest in examining the effects of applying MM gravitates 
toward college-level education. There was a noticeable diversity in the study 
durations, ranging from 1 hour (e.g., Cory & Garofalo, 2011) to 1 semester (e.g., 
Klymchuk et al., 2008; Yildirim et al., 2010).  
 
Inferential Analysis and Theme Formulation 
 
While qualitative research unfolds as data are gathered, each study was considered as 
an individual source of information. With the goal of searching for keys that reflected 
scientific inquiry in MM along with descriptions that highlighted students’ 
progression through the modeling cycles, a tabularization was generated; see  
Table 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 2:  Summary of Treatment Descriptions and Research Findings 
 

 
 
When categorized by medium-supporting modeling activities, traditional pen-and-
paper activities—used in 11 studies—dominated the pool. Computers were used in six 
of the studies, and a real lab was applied in only one study. When categorized by 
elements on inquiry, in the majority of the studies (12, or 63%), the processes were 
initiated by having students formulate a problem, analyze given contexts, and 
construct mathematical models. In four of the studies, students were required to state 
a hypothesis. 
 
According to the procedures of analyzing a qualitative research study (Hsieh & 
Shannon, 2005), its inference concludes with formulations of themes that will be used 
to answer research questions. In this study, constant comparisons and debriefing of 
the accumulated research findings helped formulate the three themes that mirrored the 
study objectives. The first theme analyzed the stages of the modeling cycles and 



 

reflected on how they integrated scientific inquiry methods. The second theme 
reflected on the modeling–problem-solving interface and sequencing of modeling 
activities within math curriculum.  
 
Research Findings 
 
How do currently used MM activities reflect on scientific inquiry methods? The 
answer to this research question is clustered into three subthemes that surfaced in the 
research pool: formulating a hypothesis and converting reality into mathematical 
symbolism. A separate theme deals with a relation of MM activities and problem 
solving.   
 
Learners were expected to state a hypothesis in four of the studies, yet several 
researchers (e.g., Crouch & Haines, 2004; Faraco et al., 2007) pointed out concerns 
about students’ weak skills in formulating, proving, and disproving the hypotheses. 
Hypotheses build on the problem stated in the activity, and hypothesis formulation is 
a one of the most important elements of scientific inquiry that drives the process 
(Kelly, 1989). Once formulated, a hypothesis focuses the investigator’s attention on a 
narrower area of investigation.  
 
The hypothesis can be perceived as the investigator’s proposed theory explaining why 
something happens based on the learner’s prior knowledge (Felder & Brent, 2004). 
The role of a hypothesis is to confirm or correct an investigator’s understanding of 
what the content of the modeling activity presents. As hypotheses in modeling 
activities will likely be verbalized such that they are aimed at testing mathematical 
concepts rather than scientific ones, the contextual balance between these two 
disciplines needs to be established. Reducing the problem statement in a way that 
students formulate only mathematical representation will not nurture the connection 
between the real world and mathematical world as defined by Blum and Leiss (2007).  
 
As the research shows, the term hypothesis is rarely used during math modeling 
activities; therefore students’ difficulties in hypothesis formulation signalize that more 
work is to be done to help students overcome the barriers. More elaboration in the 
differentiation between hypothesis and prediction is also needed, as both can be used 
in mathematical modeling. A hypothesis proposes an explanation for some puzzling 
observation, while a prediction is an expected outcome of a test of some element of 
the hypothesis (Lawson, Oehrtman, & Jensen, 2008). Thus, predictions will be 
associated with deductively organized modeling activities seeking a unique solution, 
as defined by Gravemeijer (1997).  
 
In inductively organized modeling activities, a hypothesis will reflect on general 
mathematical structures and scientific context, whereas a prediction will constitute an 
extension of the activity, most likely supporting its further validation (see, e.g., 
Leutner, 2002). The use of these essential terms of scientific inquiry during math 
modeling activities is not visible in the current research.  
 
A major concern voiced frequently in the research pool involved students’ inability to 
transfer a text scenario description into its mathematical embodiment (e.g., Soon et al., 
2011; Yoon et al., 2010), which usually constitutes the pivotal element of the 
modeling process. During the process of analyzing the accumulated research with the 



 

intention of finding suggestions for improving this stage, two further questions 
emerged: Is the deficiency due to a weak student understanding of mathematical 
structures (e.g., the properties of periodic functions, the differences between rate of 
change and a percent change, the techniques of solving differential equations, and so 
forth), or is the deficiency due to difficulties in identifying conceptual patterns in 
given problems (scientific principle) and mapping the patterns on corresponding 
mathematical embodiments? Thus, the interface of integrating the two different 
worlds—real situations and their corresponding mathematical representation, as 
defined by Blum and Leiss (2007)— needs further investigation to help students see 
the link. Flegg et al. (2013) concluded that in the process of understanding 
mathematical model formulation, students look for relationships between the math 
elements of the model and the context and try to relate the model to what they already 
know, which is not sufficient. 

 
Another theme that evolved from the qualitative analysis involved the investigation of 
how modeling activities support students’ problem solving skills, what their 
strongholds are, and which elements appear to be still unsolved. In their study, Yu and 
Chang (2011) concluded that “developing the modeling ability promotes students’ 
problem solving ability” (p. 152). However, they also noticed a lack of theoretical 
background on how to transition the process of mathematical modeling to problem 
solving. There is though strong research supporting the thesis that carefully designed 
modeling environments can foster and solidify students’ problem-solving skills (e.g., 
see Chinnappan, 2010).  
 
In this venue, the issue of sequencing modeling activities within math curriculum can 
also be discussed. One of the themes that emerged from the high school modeling 
research findings was the sequencing of modeling activities within a chapter domain. 
There are two distinct voices regarding this matter: one, advocated by Blum et al. 
(2007) and Lesh and Zawojewski (2007), suggests that modeling activities be 
implemented prior to new content being taught, while the other view, as presented, for 
example, by Leutner (2002) and Chinnappan (2010), proposes that modeling activities 
be implemented after new content is delivered. Both strategies seem to benefit 
learners, but caution needs to be taken with the inquiry design of the activities.  
 
Lesh and Zawojewski (2007) supported their claim by pointing out that modeling 
implemented as a concluding activity of the instructional unit guides students along 
necessary trajectories but turns the activity into mathematical applications, which is 
not intended. A legitimate question in this context arises: Does associating 
mathematical modeling with the exercising of mathematical applications diminish the 
virtue of modeling activities?  
 
Considering the content of the simplicity principle (see Lesh & Kelly, 2000), it seems 
that implementing inductively organized activities after content delivery would 
produce higher learning effects as compared to the reverse order. There is further 
support for such sequencing; Leutner (2002) advocated that students’ pre-domain 
knowledge correlates with their achievement in modeling and problem-solving 
activities.  
 
 
 



 

A similar conclusion was reached by Chinnappan (2010), who stated that if the goal 
of teaching math is developing students’ structural understanding of concepts and 
embedding the concepts in realistic contexts, students need to learn the structures 
before exercising their applications, and this arrangement is a precursor of students’ 
success.  
 
Since modeling activities are often depicted by diagrams (e.g., see Blum & Leiss, 
2007; Pollack, 1978), we determined that suggesting some modifications to the 
existing cycles to reflect the current research findings might serve as a way of 
expressing the research conclusions (see Figure 1).  The modifications of these 
cycles reflect the research findings and are guided by an attempt to increase the 
presence of scientific inquiry methods in the math modeling activities, especially in 
the initial and concluding stages of the process.  
 
Although the general structure is not new, we suggest emphasizing certain stages that 
emerged through debriefing of the primary research. The concluding section of the 
research has a bifocal purpose: to elaborate on the general structure of the proposed 
modified modeling cycle by pinpointing particular research findings that led to its 
emergence and provide suggestions for modeling activities rooted in this design. 
 
The stem of the process is organized in a manner that will simultaneously provide the 
learner with foundations for problem solving and offer the opportunity for 
intertwining mathematics and science (or other) concepts. Constant revision of the 
process stages is also strongly suggested. 

  Figure 1: 
Integrated Modeling Cycle 

 
 
 
 
 



 

The process illustrated in Figure 1 is initiated by providing students with a real 
context and a problem/question to solve. It is important for the context to provide 
opportunities for taking measurements and collecting data that will represent not only 
scientific evidences for the activity but also create more prompts for hypothesis 
formulation. Thus, based on their prior knowledge, students formulate a hypothesis 
for the problem solution, not only reflecting on the mathematical structure but also 
supporting it by scientific or other subject knowledge.  Data taking, analysis, model 
formulation, its verification, and its confirmation constitute the central stage of the 
modeling activity.  
 
The mathematical structure enacted will appear as the optimal solution to the problem 
posed. Through interactions with an appropriate medium, students progressively build, 
revise, or adapt their initial strategies if necessary. Students then validate the model’s 
mathematical structure (e.g., type of algebraic function) and the coherence of the 
structure with the embedded scientific principle. Once validated, the model is ready to 
be used in other contexts or applied to solve word problems of a similar content 
domain. The details of how the stages were assembled follow. 
 
Implications 
 
This study carries certain limitations, some of which can be attributed to the limited 
number of studies available for analysis, and others that can be attributed to the 
diversity of mathematics curricula and competencies across the countries where the 
research on modeling was conducted. Accounting for such diversity was not possible 
in the present study. Moreover, though the view of this research was that 
mathematical modeling is intended to support problem solving, a moderator link 
testing the modeling impact on students’ problem-solving techniques could not be 
established. In some of the primary studies, student achievement resulting from 
mathematical modeling activities was evaluated on a broader scope, seen through 
general students’ math concept understanding but not focused on modeling skills, an 
issue that was raised by Inversen and Larson (2006).  
 
This conclusion prompts more sophisticated research focused on investigating student 
perceptions of transitioning from mathematical modeling to problem solving and their 
success with the latter. The current research also shows the need for the establishment 
of a stronger link between mathematical modeling and problem solving in high school 
practice. It has been widely proven that mathematical modeling, even when taught in 
isolation to problem solving, helps accomplish multiple math learning objectives (e.g., 
see Chinnappan, 2010; Crouch & Haines, 2004). Yet, if set as a leading method of 
problem-solving techniques, its impact on students’ mathematical knowledge 
acquisition is projected to be much higher.  

 
One major question that arose and warrants further investigation is the following: 
How can educators organize experimental activities in a math classroom that is not 
typically designed for such activities? Advances in modern technology can be helpful. 
Several studies (e.g., see Finkelstein et al., 2005) have shown that computerized 
experiments not only effectively replace real experiments, but students who used 
simulations learned even more than students who used real equipment.  
 



 

Thus, the potential to include virtual simulations that allow for manipulating variables 
and collecting data exist, and it seems that this potential is not fully explored in 
mathematics classes yet. Another question, and one of a rather philosophical nature, 
that emerged involves the possible augmentation of the math description: Are the 
methods of mathematics, defined widely as pattern seeking and conjecture 
formulation (Devlin, 1996), sufficient to reflect on their new role to lead learners 
through the MM processes?  
 
Finally, MM has the potential to bridge math with other academia; thus, addressing 
the issue of a closer integration of science inquiry with math emerged as a venue for 
future investigation.  
 
As one of the obstacles in adopting inquiry-based learning projects in mathematics is 
“a tremendous gulf between the language and traditions of problem solving in 
mathematics and inquiry in science” (Schoenfeld & Kilpatrick, 2013, p. 901), it seems 
that mathematical modeling supported by scientific inquiry can bridge these two 
learning methods. The author strongly advocates conducting further research in these 
regards. 
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