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Abstract

This paper applies a novel technique of canonical gradient analysis, pioneered in
ecological sciences, with the aim of exploring student performance and behaviours
(such as communication and collaboration) while undertaking formative and
summative tasks in technology enhanced learning (TEL) environments for computer
programming. The research emphasis is, therefore, on revealing complex patterns,
trends, tacit communications and technology interactions associated with a
particular type of learning environment, rather than the testing of discrete
hypotheses. The study is based on observations of first year programming modules
in BSc Computing and closely related joint-honours with software engineering, web
and game development courses. This research extends earlier work, and evaluates
the suitability of canonical approaches for exploring complex dimensional gradients
represented by multivariate and technology-enhanced learning environments. The
advancements represented here are: (1) an extended context, beyond the use of the
‘Ceebot’ learning platform, to include learning-achievement following advanced
instruction using an industry-standard integrated development environment, or IDE,
for engineering software; and (2) longitudinal comparison of consistency of findings
across cohort years. Direct findings (from analyses based on code tests, module
assessment and questionnaire surveys) reveal overall engagement with and high
acceptance of collaborative working and of the TEL environments used, but an
inconsistent relationship between deeply learned programming skills and module
performance. The paper also discusses research findings in the contexts of
established and emerging teaching practices for computer programming, as well as
government policies and commercial requirements for improved capacity in
computer-science related industries.
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Introduction

Ever since the introduction of FORTRAN to Higher Education in the 1960s (Davey &
Parker, 2010), computer programming has been considered a challenging subject to
learn. Although much progress has been made with teaching techniques, 50 years on,
students still struggle to learn the underlying concepts and to apply principles to
solve programming problems.

Programming modules are central to the four computing courses taught here at
Buckinghamshire New University (hereafter referred to as ‘Bucks’). Due to the
considerable revenues that digital and technological industries attract to the UK
economy (Sparrow, 2006) the newly elected government has reaffirmed a
commitment to policy to promote “high levels of skills in science, technology,
engineering and maths (STEM), and citizens that value them” (UK Government
Department for Business Innovation & Skills, 2015). The number of programming
and software engineering related jobs are growing at a rate that is faster than most
other sectors. In the USA, some forecasts estimate growth between 20-30% by 2020
(Bureau of Labor Statistics, 2014; Zhao, 2013), thus indicating a continued global
demand for skilled programmers. Livingstone and Hope (2011), co-author of “The
Next Gen” report, however found that there had been a reduction in the numbers of
qualified graduates entering the video games industry. The authors attributed this to
university curricula that “neglected” the computer science and programming skills
needed by this sector (Gove, 2012; Livingstone & Hope, 2011).

In Higher Education, although the dropout rate amongst other subjects has
decreased recently (HEFCE, 2013), this is not the case with computing and computer
science courses. Programming modules are often cited as an obstacle to progression.
It is estimated that between “30% (in the 1960s) and 50% (some institutions in
2010s)” of students taking programming will fail or dropout (Bornat, 2011). This is
consistent with the experiences at Bucks where many students are required to
retake introductory programming modules in order that they may progress to
second year studies.

This research continues the work of Mather (2015), presented at the IAFOR ECTC
conference in 2014. Research reported here endeavours to determine whether the
patterns of engagement and learning progress reported this year are consistent with
those reported for 2014, and thereby indicate whether earlier observations are likely
to be representative of future cohorts. Since Mather’s earlier study, assessment
criteria of the modules involved were altered in an attempt to encourage the
development of a deeper understanding of programming skills required by industry.
In the 2013-2014 academic year students were required to complete and document
all tasks (numbering 100 or so problems) issued in ‘study packs’. These comprise
some 5-7 in-class practical exercises and 1-3 independent studies each week. In a
further week exercises are replaced with a single in-depth and extended project. This
academic year (2014-2015) students were requested to only submit independent
studies and projects, significantly reducing the volume of work required for
assessment. It was hoped that this would allow greater time to concentrate on



completing tasks to a higher standard. The course team also introduced voluntary
formative testing measures to help students consolidate subjects covered in theory
and practical sessions.

Aim and Objectives

This paper applies a novel technique of canonical gradient analysis, pioneered in
ecological sciences, with the aim of exploring student performance and behaviours
(such as communication and collaboration) while undertaking formative and
summative tasks in technology-enhanced learning (TEL) environments for computer
programming.

Research emphasis is, therefore, on revealing complex patterns, trends, tacit
communications and technology interactions associated with a particular type of
learning environment, rather than the testing of discrete hypotheses. The study is
based on observations of first year programming modules in BSc Computing and
closely related joint-honours computing with software engineering, web and game
development courses. This research extends earlier work, and evaluates the
suitability of canonical approaches for exploring complex dimensional gradients
represented by multivariate and technology-enhanced learning environments. The
advancements represented here are: (1) an expanded context, beyond the use of the
‘Ceebot’ learning platform, to include learning-achievement following advanced
instruction using an industry standard integrated development environment, or IDE,
for engineering software; and (2) longitudinal comparison of consistency of findings
across cohort years.

The overall aim was to continue applying the technique of ‘canonical’ analysis to
explore student progress and patterns of engagement behaviours (including
communication and collaboration) while using in-house TEL environments for
learning programming.

The supporting objectives were as follow:

* To suggest behaviours associated with learning success;

* By validating studies reported in 2014, to indicate whether behaviours may
reliably predict learning success (thereby, have potential value as early
signals for remedial intervention);

* To determine whether the modified assessment regime has improved the
alignment of assignments to workplace skills;

* To compare the findings of 2015 with those reported in 2014 with respect to
the persistence (thereby predictability) of engagement patterns (regardless
of the use of an additional learning platform and modified regime);

* To comment on the usefulness of canonical approaches in the light of
extended findings.



Literature Review

Many educational researchers have attempted to discover predictors for success in
learning programming, with varying results. The following review suggests that
learning success cannot be attributed to simple educational factors or solutions. This
perhaps reflects the multifaceted nature of learning and its dependence on complex
interactions between diverse influences such as teaching methods, learning styles,
supporting materials, modes of assessment and the learning environment. The
review, however, attempts to identify prominent student behaviours and/or
attributes that may either contribute to success or obstruct progress when learning
programming. These factors may influence the delivery of programming courses and
guide teacher intervention.

Dehnadi and Bornat (2006) claimed to have designed an aptitude test able to predict
“with high accuracy” the students most likely to succeed when learning
programming at an introductory level. Their aptitude test contained 20 questions on
the assignment of variables (entities used to store information/values in programs),
and was administered to 61 students in both the first and third weeks of module
delivery. According to the answers submitted, students were placed in one of three
‘mental model’ categories that represented the conceptual approaches that non-
programming students used to solve problems. The categories were ‘consistent’
(those using the same conceptual model), ‘inconsistent’ (those drawing from a
variety approaches) and ‘blank’ (those not answering most or all questions).

In their analyses of two sets of exam results, Dehnadi and Bornat (ibid.)
demonstrated that the ‘consistent’ group significantly outperformed their
‘inconsistent’ peers. Although the test was replicated by other researchers
(Caspersen et al., 2007; Ford & Venema, 2010), these did not demonstrate similar
associations between performance and ‘mental model’, thus placing the prediction
value of Dehnadi’s and Bornat’s (op cit.) in some doubt. Richard Bornat (2014) has
since modified claims concerning the reliability of their test as a result of findings
from subsequent administrations of the test. Nevertheless, he continues to advocate
the need for students to develop consistent mental models in order to succeed as
programmers. Other authors have identified specific topics that cause confusion
when learning programming. These include problems relating to determining the
values assigned to variables (e.g. du Boulay, 1986; Bayman & Mayer, 1983; Perkins &
Simmons, 1988), and related problems working with iteration constructs that
programmers use to repeat code (Bornat, 2011; Kessler & Anderson, 1986).

The late Steve Jobs (1995) remarked on the importance of programming as a ‘mirror
for thought processes’ explaining that “everyone should learn how to program a
computer, because it teaches you how to think”. This is consistent with Ben-Ari
(1998) who associates the educational philosophy of constructivism with learning
how to program. Students create their own mental models of a concept, based on
their previous knowledge and experiences, rather than ‘copying’ someone else’s idea
of what the concept is, from a book or from the lecturer. Biggs and Tang (2011)
stress the importance of constructively aligning the course materials, teaching, and



assessment so that students have opportunities to coherently relate ideas and
concepts from these individual elements of the course. Hagan and Markham (2000)
found that students who had prior experience in a programming language
performed “significantly better” in assessment. They surveyed students at four
stages during an introductory programming module at Monash University in
Australia. Data collection was by questionnaire survey and included biographical
information, educational expectations and programming experience. The authors
were therefore also able to observe that greater grade performance was associated
with prior programming experience and to exposure to more than one programming
language. It is of further interest that other researchers have found that prior
experience can be a hindrance if this based on misconceptions or incorrect models of
programming concepts (Bonar & Soloway, 1985; Taylor & Du Boulay, 1987; Lui et al.,
2004). Conversely, Longo (2010) regards that the competitive advantage of prior
experience is unaffected if students already possess some ‘pre-existing matrix’, or
schema, or correct mental model of programming principles.

Following a study that questioned students on their understanding of passages of
prose, Marton and Saljo (1976) famously reported that individuals either adopted
“surface-level or deep-level processing” strategies. Surface learning behaviour is
generally associated with a focus on knowing what needs to be known in order to
complete a task. In contrast, deep learners consider the underlying reasons behind
concepts and explore these in greater detail. Bornat (2011) suggests that the
decision to learn lies with the student; in other words teaching does not necessarily
result in learning.

Simon and co-authors (2006), reporting on a “multi-national and multi-institutional”
study in 2004, found that grade results were positively correlated with a deep
approach to learning and negatively correlated with adopting a surface approach.
The study compiled the data of 177 participants from 11 institutions based in
Australia, New Zealand and Scotland. The study comprised four tests: a spatial
visualisation task (a standard paper folding test); two behavioural tasks - drawing a
simple map, and articulating a search strategy; and an attitudinal task based on a
guestionnaire that requested students to provide details of their approaches to
learning and studying.

It is also commonly suggested that there is an association between mathematical
and programming ability. Wilson and Shrock (2001) conducted a study that recorded
twelve ‘predictors’ for 105 students. They found that a background in mathematics
was the second strongest predictor of success in a programming module. Van der
Veer and various colleagues (1983; 1986) also report that students who are strong in
maths do not require as much teaching as other students. Simon and co-workers (op.
cit.), similarly observe a correlation between maths ability and programming ability,
and suggest that the two disciplines require similar logic to step through problems.
Here at Bucks, there is anecdotal evidence that students who are strong in maths
can solve problems faster than those who are not. Mather (op. cit.) also found that
students were able to solve problems within the environment that they were being
taught in, but many struggled to answer questions outside that environment:



suggesting the underlying concepts were not learnt to a level whereby they could be
confidently transferred to other environments.

Programming modules are typically structured so that students build on knowledge
each week, whereby concepts introduced later in the module often require that
foundation principles are properly understood. This is sometimes referred to as
‘scaffolded’ learning (Sawyer, 2006) and is also consistent with Meyer & Land’s
(2013) notion that many subject disciplines have ‘threshold concepts’. Such
thresholds are critical transformations in understanding that are necessary for a
learner to progress to more advanced topics.

Robins (2010) noticed that students built momentum as they succeeded in learning
the first topic, and then found it easier to learn the second, and then the third and so
on. However, students who failed to learn foundation topics often found it difficult
to progress further. The loss of momentum at early stages may also signal reduced
motivation and a weakening in engagement and attendance.

Given the difficulties that students experience when learning programming, it seems
probable that such reduced levels of motivation may, in some part, be attributable
to low ‘self-efficacy’. This is described as “the personal perception of one’s ability to
successfully execute an activity” (Ponton & Rhea, 2006 after Bandura, 1997). Ponton
and Rhea (2006), who contextualise autonomous learning in the Social Cognitive
Theory of Bandura (1986), consider how three key agents (environment, the learner
and behaviour) reciprocally influence the development of self-efficacy through
‘mastery experiences’. These are experiences where the learner genuinely attributes
‘successes’ to personal ability. Conversely, successes borne of ‘environmental
factors’, such as assistance from others or “information supplied by the
environment”, do not enhance self-efficacy (Ponton & Rhea, op. cit. after Bandura,
1997).

Whilst academic skills are usually the subject of research, academic ability is also
significantly affected by wellbeing and personal circumstances. Wilson & Shrock (op.
cit.), observed that ‘comfort level’ was the most significant predictor of student
success in a programming course. Outside of programming, many authors have
commented on the negative impact that anxiety has on students (Medlicott, 2009,
Richardson et al., 2012). The pressure to do well has always existed in academic
contexts, but in many countries this anxiety is now exacerbated by increased tuition
fees against a background of global recession and reduced opportunities for
employment. De Raadt and colleagues (2005) note a change in research focus from
‘presage factors’ (IQ, previous programming experience) to more holistic views
surrounding issues of welfare, experience and emotional circumstances that may
influence capacity for learning.

Students respond differently when faced with programming problems. Perkins and
co-workers (1989) noticed that some students were easily frustrated with problems
and quickly abandoned attempts at solutions. These students were categorised by
the authors as ‘stoppers’. Conversely, other students (categorised as ‘movers’)



recognised when they were unable to solve problems, and would progress by
working on other tasks to make more effective use of time. As well as being effective
in time management, ‘movers’ were less prone to lose motivation than ‘stoppers’.

Motivation is frequently cited as a key factor in determining student success across
many disciplines. Geoff Petty (2009) recognises this to be one of the most significant
challenges faced by teachers and students alike, and of particular consequence for
the “digital native” generation (Prensky, 2001; Ritchel, 2010). This generation is
often characterised, even stereotyped, by behavioural attributes that include: low
attention span; prone to distractions and continually switching between tasks;
having insufficient ‘downtime’ to connect ideas; lack of sleep due to time spent with
social media etc.

Many authors have found that the best predictor of success revolves around student
expectations, especially of grades (Richardson et al., 2012; Rountree et al., 2002),
but that attitude, keenness and general academic motivation are also important
(Simon et al., 2006).

Methods

The approach adopted was similar to that described by Mather (op. cit.), thereby
ensuring that findings could form part of a longitudinal study. This adopted an
ecological perspective that, similar to the positioning of organisms along natural
environmental gradients, the position that students may occupy along achievement
gradients is partly determined by their learning behaviours and their engagement
with learning environments.

Mather’s 2014 questionnaire was slightly amended. The overall structure remained
unchanged as follows:
* aninitial question asking students to evaluate the ‘perceived difficulty’ of
modules;
* five test coding questions, four requiring coding concept definitions and one
to identify output from a ‘broken’ code;
* 22 Likert scale questions (20 in 2014) concerning learning behaviours and
module acceptance attitudes.

Likert scale questions were modified in 2015. This was because in the earlier study
(Mather, ibid.) the combined test and questionnaire was issued after students had
completed only one of two programming modules, this based on the ‘Ceebot’
learning environment. In 2015, the test and survey was conducted at the end of the
academic year when students had almost completed both programming modules.
Questions were therefore amended to capture impressions of both Ceebot
(Semester 1 module) and the C# language using Microsoft’s Visual Studio™ platform
(Semester 2 module). A further question was included to determine student
preferences for learning programming with either Ceebot or the Visual Studio™
integrated development environment (IDE).



This research forms part of the teaching team’s ongoing evaluation of module
delivery. Full student consent was obtained and findings have been anonymised.



Results and Discussion

5.1 The application and interpretation of Redundancy Analysis

Questionnaire data was transferred to a spreadsheet. Programming test data was
scored for correctness and 21 opinion questions captured using five Likert categories.
For the purposes of canonical analysis (see Mather 2015 for details of this
procedure), independent variables (corresponding to ‘environmental gradients’),
were represented by programming skill and knowledge and module grade. The
dependent variables were represented by the Likert opinion responses and a
percentage record of student attendance. The analysis was conducted using the
canonical analysis software Canoco 5™. This is widely used by ecologists to conduct
multivariate analyses and reveal patterns and trends in data. Here redundancy
analysis (RDA) is applied to the data set. Among key advantages of RDA over more
commonly used ordination techniques (such as Principal Components Analysis) are:
* that ordination axes are constrained in iterative steps to describe variation in
the explanatory variables of interest;
* the technique does not require assumptions of unimodality (ter Braak, 1987);
* the resulting correlation biplots provide an easily interpretable and graphical
summary of the most important relationships in the ordination model.

The reader is again referred to Mather (op. cit.) and the original and updated works
of Canoco specialists (e.g. Corsten & Gabriel, 1976; ter Braak, op. cit. and 1992;
Smilauer & Leps, 2014) for more detailed description of the mathematical
interpretation of vectors represented by RDA biplots.

For the purposes of visual interpretation of the biplot figures below it is sufficient to
understand that vectors or ‘arrows’ point in the direction of maximum variation.
Variables with longer arrows have greater effect on the overall model and are
generally most closely correlated with the independent variables of interest (ter
Braak, 1987; ter Braak &Prentice, 1988). Variables and axes pointing in the same
direction are positively correlated, perpendicular vectors are uncorrelated and
opposing ones are negatively correlated.

With respect to negative correlations, these may only be artefacts caused by
‘negative’ assertions in expressing questionnaire items. In the biplots below
independent variables are indicated by red arrows and dependent ones by blue
arrows.

The summary statistics for analyses of both 2014 and 2015 data are presented in
Table 1. Eigenvalues and other expressions for the proportion of variation explained
by the first two (most important) axes, as well as for overall models, are slightly
greater in 2014 than in 2015. This is perhaps due to the inclusion of further variables
that were later shown to be rather weakly related to explanatory variation (notably
two questions to capture preferences for the two environments used for teaching).
Monte Carlo permutation tests indicate that model axes significantly describe
variation in dependent variables.



Table 1 Summary statistics for RDAs presented in Figures 1 and 2.

Statistic Axis 1 Axis 2
2015 Analysis

Eigenvalues 0.0770 0.0258
Explained all variation (cumulative %) 7.70 10.27
Pseudo-canonical correlation 0.5968 0.6222
Explained fitted variation (cumulative %) 66.98 89.40
Permutation Test Results (on all axes) pseudo-F=1.5; p=0.05
2014 Analysis

Eigenvalues 0.0915 0.0516
Explained all variation (cumulative %) 9.15 14.31
Pseudo-canonical correlation 0.8523 0.6975
Explained fitted variation (cumulative %) 54.04 84.52
Permutation Test Results (on all axes) pseudo-F=1.4; p=0.04

5.2 Results for 2015 and their comparison with 2014

Despite changes made to delivery, as well as differences in student cohorts and
assessment regime in 2015, the overall patterns of biplot ordination for 2015 (Figure
1) were similar to those in 2014 (Figure 2).

The most notable feature is that in 2015 (similar to 2014) the alignment between
module assessment and ‘real’ programming skills (“Module %” and “Test ...” vectors
in Figures 1 and 2), is not as strong as the programing team would wish. In fact, the
increased angle (towards the perpendicular) between module assessment and test
variables suggests that the modified assessment may not have had the desired effect
of cultivating a deeper understanding of principles.

With regard to other relationships, all assessment indices (red) appear to remain (as
in 2014) relatively strongly correlated with the ‘commitment’ indicators of
independent study and homework (16, 19), but less so (in 2015) with the inclination
to maintain a logbook of practical work (as indicated by the shorter vector for item
12 in 2015 compared to 2014). This latter observation is of some pedagogic
significance because the modified assessment regime for 2015 also omitted the need
to submit in-class solutions, and required students to present a smaller portfolio of
independent-study tasks.
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Figure 2. Ordination biplot from RDA of 2014 for comparison with 2015
(reproduced from Mather, 2015). Note: see caption for Figure 1 for interpretation.

Other noticeable between-year pattern similarities included both the orientation
and strength (length) of key variables. These included expressions: “found tasks
easy” (easy=scored 1 and very difficult scored 4); item 3, Ceebot animation was
helpful (1=strongly agree to 5 strongly disagree); and item 19 preference to “work at
home” (1=strongly agree to 5 strongly disagree). In both years these three variables
are relatively strong and closely aligned with the first axis (indicating their overall
importance in the model). Their opposing orientation to assessment and test
variables is only an artefact of the direction of Likert category. Thus those who found
tasks easier (probably through greater practice), appreciated the animation used in
the Ceebot learning environment and were inclined to work outside lessons,
predictably, achieving greater module and test scores. It was also unsurprising to
discover that in both years, successful students had a tendency to “do designs and
algorithms” (4) for their solutions; a behaviour which also directly contributes to
module grades.

Of remaining similar and influential variables, the relationships between test score
vectors and the item 5 assertion that Ceebot “doesn’t help me remember concepts”
(and to lesser extents disagreements that it is “quicker to learn without Ceebot” and
“only work in practicals”, items 11 and 16), are reassuringly consistent across both
years.



Over interpretation of weaker relationships is perhaps best avoided on the grounds
that any model influences are unlikely to be significant. These include expressions
for enjoyableness (item 6), the desirability of certification (8), a need to have extra
time (17), the desirability of including formative tests (10), relevance for
employment (15), and ease in discovering help (items 2 and 14). Similarly, analysis of
qguestionnaire items introduced in 2015 suggests a slight preference for using
Microsoft Visual Studio™ over Ceebot. It may also be inferred from the direction of
relationships, that Visual Studio™ is associated with higher code skill scores, and
preference for Ceebot is more strongly associated with assessment success.
However, although the patterns may be consistent with such views, neither
relationship is confidently demonstrated by the analysis.

Regarding differences between years, in 2015 ‘attendance’ is clearly more important
than 2014 and is also more closely aligned with the three learning indicators. This
may be attributed to a small but significant cohort of unusually capable game
development students who, in 2014, were able to complete programming work on a
self-directed basis while only attending classes infrequently.

5.3 A changed ‘polarity’ for student collaboration — is this an unintended
consequence of the reduced assessment of in-class work?

Although clearly visible in both models, the changed polarity for collaboration (item
1) is less easy to explain. In both 2014 and 2015 collaboration (the full questionnaire
expression for this item was in fact “While working on exercises it is very helpful to
discuss problems with friends”) is closely aligned with overall assessment success
(Module %). In 2014 the opposition of collaboration and assessment vectors are
consistent with a rationale that a high desire to discuss problems with colleagues
(agreement with item 1 therefore low score) is associated with module success. In
2015, this relationship is such that low desire to collaborate is associated with
success. It may be suggested that the 2015 group was less ‘cohesive’ than in 2014
(attendance and overall module success indicators are in fact consistent with this
view), but such a complete reversal in direction of relationship indicates a need to
more fully investigate the role of collaboration in learning programming.

One interesting (and pedagogically important) scenario is that by completely
removing classwork from assessed elements in 2015, rather than having a desired
impact of encouraging students to more deeply explore a smaller number of
solutions, this has substantially reduced the need for collaborative and discursive
interaction towards discovering programming solutions.



6. Conclusion and recommendations

This extension to the work of Mather (2015) demonstrates the overall usefulness of
canonical RDA as means for exploring student progress in the educational contexts
addressed by this study. Findings also were found to be useful for revealing patterns
of engagement with learning materials and the class environment, as well as
associating these with measures of learning achievement.

In 2015, as was the case in 2014, certain ‘commitment’ behaviours (such as the
willingness to undertake homework and other independent study) are consistently
associated with ‘success’. The consistent relationship of these and other ‘behaviours’
across both years suggests their reliability as ‘indicators’ of success as well as of
acceptance and engagement with learning environments.

The continuing orthogonality of the relationship between module grade and skill test
data code (despite changes made to assessments) is a matter of ongoing concern to
the teaching team. Additionally, the teaching team will wish to further investigate
the possibility that the reduced in-class component of assessment (intended to allow
greater time to develop deeper subject understanding) may have inadvertently
encouraged ‘surface’ strategies to complete independent studies at the expense of
equally important (but now unassessed) collaborative classwork. It may also be
concluded that analyses did not demonstrate any improvement in the alignment of
assignments to workplace skills as a result of modifications to the assessment regime.

Many aspects of the observations reported here are consistent with findings
reported in literature by the wider research community. Although no causality is
demonstrated by analyses here, variation in module achievement, nevertheless
reflects the widely ranging circumstances of the student body (such as prior
knowledge, ‘comfort’ in the academic environment, expectations and motivation)
that are known to influence success (e.g. Richardson et al., 2012; Rountree et al.,
2002; Simon et al., 2006; Wilson & Shrock, 2001).

Overall many of the indicators used in our findings signal the importance of fully
engaging with studies at all levels (attendance, collaboration, self-directed study,
participation with formative class work as well as summative independent study).
This is consistent with wide acceptance that deep-level processes are required to
embed learning (Marton & Saljo, 1976) and that computer programming is no
exception to this principle (Simon et al., 2006),
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