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Abstract 

 

This study proposes an integrated framework that combines with Multi Agent Reinforcement 

Learning (MARL) with advanced computer vision techniques, including pose recognition via 

MMaction2, object detection with Yolov11, and multi-object tracking using ByteTrack. The 

McGill Hockey Player Tracking Dataset (MHPTD) is used to analysis the ice hockey team 

sport. In building the framework with MARL, each player is modeled as an autonomous 

agent whose observation space encompasses self-position, puck state, and the spatial 

locations of teammates and opponents. By incorporating inputs from the MHPTD dataset, the 

framework dynamically adapts strategic behaviors, like defending, attacking. When 

simulating realistic ice hockey scenarios, the framework can be used for strategy optimization 

using the group object detection, play behavior modeling by pose recognition and positional 

data tracking, advanced AI opponents’ strategic analysis in future games. Reward function is 

setup to encourage agents to move towards the puck and getting rewards when shooting to 

the opponents’ door. Multi-agent setup can simulate full team sport. The framework can 

enhance the simulation of complex player interactions, bridge the gap between MARL 

simulation and real-world fix-field team sports, provide insight in coaching and sport 

education. 

 

 

Keywords: multi agent reinforcement learning, object detection, pose detection 

 

 

 

 

 

 

 

 

 

 

 

 

iafor 
The International Academic Forum 

www.iafor.org  



 

 

Introduction 

 

With the development of science and technology, the application of artificial intelligence and 

machine learning in sport analytics have opened new opportunities for optimizing team 

dynamics, tactical strategies and individual player evaluation in sport education (Weber et al., 

2022; B. Zhang, 2024). This research presents an integrated framework that utilizes Multi 

Agent Reinforcement Learning (MARL) with computer vision techniques including Yolov11 

for object detection, MMAction2 for pose recognition, and ByteTrack for multi-object 

tracking. The framework applied to the McGill Hockey Player Tracking Dataset (MHPTD) in 

order to create an environment for simulation and testing the MARL. 

 

The center of this research lies in agent-based modeling of players; each individual player 

can be conceptualized as a learning agent who is able to perceive and interact with other 

agents (Albrecht et al., 2024). Each agent is equipped with a space which represents the 

coordinate’s locations, also the distance to the other players including teams and opponents, 

the puck. Therefore, by employing a Multi Agent Reinforcement Learning (MARL), agents 

learn to optimize the individual rewards, at the same time coordinate with team structures, 

reflect hocky strategies, such as power-play setups, transition plays.  

 

Figure 1 

Historical Movement Tracking by ByteTrack 

 
 

In order to build the integrated framework, Yolov11 is utilized for object detection (Jocher & 

Qiu, 2024) to identify players from the same team and opponent team, the puck (ball), and 

the referee in each frame. ByteTrack links these frames across time to produce the historical 

movement tracking, continuous identifying the movement of objects (Y. Zhang et al., 2022). 

In the next step, MMaction2 is used to perform pose-based action recognition which is 

designed by MMaction2 Contributors (2020), to identify each individual player’s movement 

including skating, passing, shooting positions. After the vision-based techniques, it enables 

reinforcement learning agents to perceive status information of the players’ location, 

movement, and behavior.  

 



 

 

Theoretical Background 

 

Compare to traditional reinforcement learning, the concept of Multi Agent Reinforcement 

Learning (MARL) was introduced by Markov games, a generalization of Markov Decision 

Processes to multi agent settings (Littman, 1994), building upon this foundation, a structured 

theoretical overview of MARL by categorizing algorithms across Markov and extensive-form 

game frameworks, and analyzing task structure (cooperative, competitive, mixed) was 

introduced (K. Zhang et al., 2021) with decentralized learning over networks, mean-field 

approximations, convergence behavior of policy-gradient methods, and the influence of game 

structure on theoretical guarantees and algorithm design. Moreover, modern MARL theories 

has built connections with methodologies by covering theoretical models (e.g., Markov 

games, coordination graphs), learning paradigms (independent, centralized, decentralized, 

and partially observable settings), algorithmic developments (value-based, policy-gradient, 

actor-critic, and communication-based methods), and practical applications ranging from 

robotics and autonomous systems to complex multi-agent simulations (Albrecht et al., 2024). 

Practically, the usage of MARL supports full team simulations and facilities automated 

strategy optimization and opponent behavior analysis.  

 

In MARL, the Multi Agent Deep Deterministic Policy Gradient (MADDPG) can address the 

non-stationarity problem, it adopts a centralized training with decentralized execution 

framework. Each agent i maintains an actor μᵢ(sᵢ|θᵢ) that maps local observations to actions, 

and a critic Qᵢ(s, a₁, ..., a₁|φᵢ) that uses the global state and joint actions during training (Lowe 

et al., 2017). Transitions (s, a, r, s′) are stored in a shared replay buffer. The critic is updated 

by minimizing the loss: 

 

                                 L(φᵢ) = E[(rᵢ + γ Qᵢ′(s′, μ1′(s1′), ..., μn′(sn′)) - Qᵢ(s, a))²]                           (1) 

 

and the actor is updated using the policy gradient: 

 

                                                ∇θᵢJ = E[∇θᵢμᵢ(sᵢ) ∇ₐᵢ Qᵢ(s, a) | aᵢ = μᵢ(sᵢ)]                                        (2) 

                                          (Lowe et al., 2017) 

 

To simulate ice hockey with MARL, we can design the model with 8-agents where each 

player (4 per team: 3 players + 1 goalie) observes local state information like position (by 

ByteTrack), puck location (by Yolov11), and nearby players. Because of reinforcement 

learning, the reward function combines sparse rewards for goals with dense rewards for puck 

possession, positioning, score, and team coordination. On the other hand, the punishment can 

be loss of puck possession, loss of score. 

 

Methodology 

 

In this chapter, the research methodology utilized for vision techniques and MARL 

simulation are presented in detail. First, the McGill Hockey Player Tracking dataset 

(MHPTD) is selected to make the analysis (Zhao et al., 2020). The dataset contains video 

clips of NHL gameplay, six classes are designed to perform the object detection in yolo 

format with player_color1, goalie_color1, player_color2, goalie_color2, referee, and puck. In 

the traditional ice hockey game, there are 12 players, because of the camera field of view 

limitations, each frame contains partial view of the rink. With simplified and focused 

environment, we plan to design the 4 vs 4 game play to reduce complexity and accelerate 

training time in the reinforcement learning.  



 

 

Figure 2 

Yolov11 Confusion Matrix in Training  

 
 

In the Yolov11 training, data was partitioned into training (80%), validation (10%), and 

testing (10%) sets to enable model generalization assessment. The evaluation was conducted 

using metrics including mean Average Precision (mAP) and class-wise confusion matrix 

analysis. From Figure 2, the confusion matrix of ice hockey class training revealed strong 

classification performance on dominant classes like player_white and player_black. This 

pipeline demonstrates YOLOv11’s capability for real-time multi-object detection in dynamic 

ice hockey environments.  

 

After object detection by Yolov11, Byte Track is utilized to track players across frames. 

ByteTrack links those detections across time, by following each player as they move around 

the rink. Even when players overlap, change directions quickly, or partially disappear, 

ByteTrack can keep tracking of players, by matching their position, and confidence scores. 

As a typical example in Figure 1, the historical movement tracking shows the changing 

locations of each object. 

 

 

 

 



 

 

Figure 3 

Pose Recognition With MMAction2 

 
 

In the next step, we use MMAction 2 to recognize player actions like passing, shooting, and 

skating. In each frame, pose estimation is conducted to analyze body movements of hockey 

players, such as in Figure 3, when a player raises their stick to shoot or stretches out to make 

a pass. This is especially useful in ice hockey, where actions happen quickly. With 

MMAction2, we can automatically detect key plays like shots on goal, successful passes, or 

even defensive actions. This makes it possible to break down the game into meaningful 

collection of movements, which can then be used for strategy review, performance 

statistically analytics, or even highlights for market values. 

 

After the pose recognition, the next step is to simulate ice hockey game using Multi Agent 

Reinforcement Learning. In the simulation, each agent (player or goalie) acts independently 

based on the detected positions from the Yolov11. In the detection of Yolov11, it provides 

the position of objects in a frame by bounding boxes and class probabilities. Therefore, the 

center of the objects is defined as the (𝑥i, 𝑦i) coordinates of the midpoint of the bounding box 

which represents the estimated self-location. In the perspective of ice hockey game, there are 

agents of TeamA, TeamB, and the puck location. Based on the results of MMAction2, the 

agent actions are defined for each frame, like skating, passing, shooting; or the moving 

direction which can be detected by ByteTrack. It provides the velocity vector of each agent as 

(Vx, Vy) for direction or movements. In designing the reinforcement learning, the reward 

function is programmed to incentivized agents (not puck) behaviors through action-based 

feedback. Agents receive a reward of +0.5 for successfully passing the puck to a teammate, 

and +1.0 for executing a shot, encouraging cooperative play and offensive engagement. 

When a team scores a goal, all players on that team receive +5.0, while players on the 

opposing team are penalized –2.0, reinforcing coordinated strategy and defensive 

responsibility. After the above preparation, we can begin to train MADDPG agents in vision 

grounded hockey simulation.  

 

 



 

 

Findings and Discussions 

 

In the MARL simulation, it demonstrates that reward and penalty structure affect agent 

behavior. There is a rise in meaning team dynamics. The puck is moving passively in the 

simulation, agents learn to pursue the puck, coordinate basic passing, and shoot toward the 

goal when in procession. The team-level rewards for scoring and penalties for conceding 

promotes cooperative strategies within each team, as evidenced by frequent passing attempts 

and spatial clustering around the puck. In MADDPG training, the combined vision inputs 

(Yolov11, ByteTrack, and MMActions2) serve as the input status to individual agent’s policy 

network which presents the selected actions based on the observation, such as the agent’s 

position, puck position, teammates position, opponents position. It enables training of 

MADDPG agents to learn in dynamic environments.   

 

Figure 4 

MARL Simulation 

 
 

In Figure 4, the green dots represent TeamA, blue dots are TeamB; the black star is the puck. 

In the reinforcement learning, they act as agents, each agent's policy network receives a 

vector of local observations as input. For agent i, the observation vector Ti includes of the 

agent’s own position at time T, the position of the puck, and the positions of teammates and 

opponents. For example: 

 

                          Ti = [xi, yi, x_puck, y_puck, x_teammate1, y_teammate1, ...]                      (3) 

 

The actor network takes this observation vector and outputs the next timestamp Ti action 

vector that represents a direction to move at the current timestamp.  

 

                                                        Ti_next = [Δx, Δy] ∈ ℝ²                                                    (4) 

 

In the above formular, Δx and Δy indicate the movement direction in the horizontal and 

vertical axes. This output can be directly applied to update the agent’s position within the 

environment for the next T timestamp. After calculating the movement direction, it is time to 

train the centralized critic network of MADDPG that intakes all actions of all agents, and 



 

 

puck to evaluate how good each joint action is. Past experiences are stored in the replay 

buffer which can help agents to learn from the training. During Training, each agent acts 

according to their own observation which shows what we discussed before about the 

centralized training with decentralized execution framework (Lowe et al., 2017), make it 

possible for agents to study the team strategies in ice hockey. 

 

Conclusion and Limitations 

 

This research developed how to integrate computer vision techniques with MARL which 

could enable trained agents to simulate in complex and dynamic fix-field multiplayers sport 

field. As illustrated in Figure 5, the research pipeline begins with applying Yolov11 for 

object detection to identify players in different teams and the puck, followed by using 

ByteTrack to track movement of players and the puck. MMAction2 method is used to extract 

pose of the players. All above factors are vectorized into structured vectors, and feed into 

reinforcement learning simulations with reward and penalty. Transitions are stored in a replay 

buffer, which is used to enable off-policy learning. In the simulation of ice hockey, we 

designed 4 vs 4 agent game. As in MADDPG algorithm, each agent is equipped with an actor 

critic pair, where centralized critics are trained. This centralized training with decentralized 

execution framework is implemented in PyTorch, and the learned policies are evaluated 

through coordinated behavior and visual analytics. 

 

Through the MADDPG training, each agent learns the decision making strategies in two 

ways, one is the collocation within team members, such as the connection between ball-

holder who are going to attack, with other attackers and defenders at the same team; or the 

connection between defenders with goalie. Each agent can access the others’ status including 

location, historical movement and pose; to make joint strategies within the team, it is easy for 

coaches to develop the teammate collocation patterns, for example, how to design successful 

attack strategies. At the same time, issues can be noticed, such as overcrowding and 

breakdowns. Another is the connection with opponents, agents can learn competitive 

responses based on the opponents’ behavior. Opponents are modeled as part of the system; 

each agent’s critic considers the actions and positions of opponents. It helps agents to 

understand and interpret tactical countermeasures, such as exploring weak zones, planning 

successful passing.  

 

In the simulation environment, it helps coaches and educators to replicate realistic game 

environments and how team response under different strategies. Coaches can test the 

influence of tactical changes and observe the actions from agents of opponents. In the 

pedagogical perspective, the simulation provides detailed visualized feedback from historical 

realistic gameplay. It offers coaches to test different strategies based on the simulation, and 

observe the responses from the agents.  

  



 

 

Figure 5 

Research Pipeline  

 
 

There is one significant limitation of the McGill Hockey Player Tracking Dataset (MHPTD) 

in this research, it is the restricted field of view from the moving camera. The camera is 

always tracking the movement of the puck and game; it cannot provide the full-size rink view 

which can offer view on the entire ice hockey field. As a result, there are observation bias, 

making it difficult to locate the exact location of objects, in using Yolov11 for object 

detection, which is the relative location, not the exact location of detection. Moreover, in 

training of the MADDPG, the relative locations of agent exert negative influence on the 

accuracy of result. The moving camera also provides challenges on Re-Identification (Re-ID) 

of objects, especially in the situation where the camera follows the puck or zooms in. 

Individual objects, such as the players might temporarily disappear from the camera, it can 

cause ID switching or loss of tracking.  

 

The ideal situation for future research could be utilized using a full-size camera, this kind of 

camera is able to catch the entire rink view. At the same time, each player can be 

photographed to offer more details visual information, such as body orientation, pose 

dynamics, and team number, which can enhance the process of Re-ID. For example, we can 

train the photographs of Teemu Selänne to develop the personalized player recognition 

module, enable ByteTrack to track him with body features and pose. When it applies to all 

players, it will enhance accuracy of object detection and tracking of players.  
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