
Toward Teaching Kids in Arab Countries Programming Skills: A Case Study

Hamzeh Aljawawdeh, Zarqa University, Jordan
Abdallah Aljalabneh, Zarqa University, Jordan

The European Conference on Education 2023
Official Conference Proceedings

Abstract
Teaching children to code has gained popularity in recent years, with many schools and
institutions now providing tools and programs to get young learners started with computer
programming. High-level programming languages, such as Python, Java, and C Sharp (i.e.,
C#), are often used in these educational contexts due to their simplicity and versatility. This
article discusses the benefits of teaching children to code with highlevel programming
languages and offers tips and strategies for effectively introducing these concepts to young
learners. Through hands-on activities and interactive lessons, children can gain valuable skills
and knowledge to serve them well in their future academic and professional endeavours. A
case study has been conducted to show that children in Arab countries can learn coding skills
effectively when they are taught using interactive and hands-on methods.

Keywords: E-learning, Distance Learning, Children Learning, Teaching Children to Code,
Software Engineering, HCI, C#, Coding Skills

iafor
The International Academic Forum

www.iafor.org

Introduction

Educators and researchers have recognized the importance of teaching children how to write
code in recent years. Coding skills are increasingly in demand in the job market and are
essential for success in various fields, including technology, engineering, and data science
[Resnick et al., 2009]. Additionally, learning to code can help children develop essential
problem-solving abilities, critical thinking, and creativity skills [Papert, 1980,Wing, 2006].

Evidence suggests that teaching kids to code can have broader benefits, such as promoting
teamwork, collaboration [O’Shea and O’Keeffe, 2016], and increasing students’ engagement,
motivation and drive in their studies [Law et al., 2016].

The relevance of teaching kids to code lies in the numerous benefits it can provide for their
cognitive development, future career prospects, and overall well-being. There are many
reasons why teaching children how to code can be beneficial and motivating. Some of the
potential motivations for teaching kids to code include the following:

1. Developing problem-solving skills: Coding requires children to break down
complex problems into smaller, more manageable tasks and to think critically and
creatively about how to solve those problems. This can help develop their problem-
solving skills, which are helpful in various contexts.

2. Encouraging creativity and innovation: Coding allows children to create and build

software and applications, which can be very rewarding and creative. It also
encourages them to think outside the box and develop innovative solutions to
problems.

3. Preparing for future careers: The demand for skilled software developers is high and

is expected to grow in the coming years. Teaching kids to code can help prepare
them for careers in technology and other fields that require coding skills.

4. Promoting teamwork and collaboration: Many coding projects involve working in a

team, which can teach children the value of cooperation and teamwork.

5. Building confidence and self-esteem: Completing a coding project can give children
a sense of accomplishment and boost their confidence and selfesteem.

1.1 Research Motivation

There is a growing recognition of the importance of teaching kids how to write code. This
includes teaching them the technical skills needed to write and debug programs and helping
them develop problem-solving, critical thinking, and creativity skills. This literature review
will discuss some possible benefits of teaching kids how to write code. The benefits below
motivate conducting this research and case study:

1. Academic Benefits One of the main benefits of teaching kids how to write code is that it
can help them excel academically. For example, research has shown that students who learn
to code perform better in math and science [Weintrop et al., 2016]. This is likely because
coding involves using logical thinking and problem-solving skills, which are also important
in these subjects.

In addition, coding can also help students develop their computational thinking skills, which
involve breaking down complex problems into smaller, more manageable parts and using
abstractions and algorithms to solve them [Wing, 2006]. These skills are increasingly
important today and can be applied to various academic and professional fields.

2. Social Benefits Teaching kids how to write code can also have social benefits. For
example, it can help them develop teamwork and collaboration skills, as they often work in
groups to complete coding projects [Weintrop et al., 2016]. This can help kids learn to
communicate effectively with others and work towards a common goal.

In addition, coding can also help kids develop leadership skills, as they may be responsible
for leading coding projects or teaching others how to code [Weintrop et al., 2016]. This can
help kids learn to take on leadership roles and be more confident in their abilities.

3. Professional Benefits Finally, teaching kids how to write code can also have professional
benefits. For example, the demand for skilled coders is high, and knowing how to code can
open up many career opportunities [Weintrop et al., 2016]. In addition, coding can also help
kids develop skills that are highly valued in the workforce, such as problem-solving, critical
thinking, and creativity [Weintrop et al., 2016].

Teaching kids to code can be a motivating and rewarding experience that helps them develop
valuable skills and prepares them for success in the future.

1.2 Research Question and Hypothesis
	
In this research, we try to answer the following research question:

RQ1: Is it possible to teach kids in Arab schools how to code using a high-level
programming language? Is selecting C# appropriate to prove the research assumption?

We hypothesize that “Arab kids have the ability and skills to learn and utilize high-level
programming languages to address complex problems such as arithmetic operations”.

In this research, we conducted a case study to investigate the effectiveness of teaching
children how to code using a high-level programming language. The study involved a group
of young learners who participated in a series of coding lessons and activities over several
weeks. Our findings suggest that children can learn coding skills effectively when they are
taught using interactive and hands-on methods and that they can apply these skills to solve
problems and create new projects.

2. Background

Teaching children to code has gained increasing attention in recent years, with many schools
and organizations offering programs and resources to help young learners get started with
computer programming. Coding education is a way to improve problem-solving and logical
thinking skills, strengthen communication and collaboration skills, and increase creativity
and innovation. In addition, high-level programming languages like Python and Java are
often used in educational contexts due to their simplicity and versatility.

Research has shown that coding education can benefit children, including improving
problem-solving and logical thinking skills, strengthening communication and collaboration
skills, and increasing creativity and innovation [Bryant et al., 2016,Margolis et al., 2017].

Several studies have investigated the effectiveness of teaching children to code. A study by
[Smith et al., 2019] found that children who participated in a coding program significantly
improved problem-solving skills and computational thinking. Similarly, a study by [Johnson
and Williams, 2018] revealed that children who learned to code demonstrated increased
creativity and innovation in their problem-solving approaches.

In addition to the cognitive benefits, teaching children to code can have positive social and
emotional impacts. A study by [Kim and Park, 2017] found that children who participated in
a coding program reported increased self-confidence and motivation and improved social
skills such as collaboration and communication.

One of the challenges in teaching children to code is choosing an appropriate programming
language. High-level programming languages, such as C#, Python and Java, are often used in
educational contexts due to their simplicity and versatility [Weintrop et al., 2016]. However,
there is an ongoing debate about the most effective language for teaching children to code.
Some studies suggest that more visually oriented languages may be more effective for young
learners [Barker et al., 2018,Hockemeyer et al., 2019].

In addition to the choice of programming language, the teaching methods and strategies used
can also impact the effectiveness of coding education for children. Research has shown that
hands-on, interactive approaches are particularly effective for engaging and motivating young
learners [Kelleher et al., 2015]. Project-based learning, in which children work on real-world
problems or create their projects using their coding skills, has also been found to be an
effective way to teach children to code [Wing, 2006].

The literature suggests teaching children to code can promote cognitive and social-emotional
development. Educators need to utilize interactive and hands-on methods and provide support
and guidance to help children succeed in their coding endeavours.

3. The Research Methodology

Design science research methodology (DSRM) is an approach to studying and solving
problems involving iteratively designing, creating, and testing prototypes or solutions to
address the issue. This approach is often used in fields such as computer science, engineering,
and management, where the goal is to create new technologies, systems, or processes that can
be applied in practice [Aljawawdeh, 2019]. DSRM focuses on the development and
evaluation of innovative solutions to real-world problems. DSRM aims to create and evaluate
new designs or artefacts that can be used to improve the functioning of organizations,
systems, or societies [Hevner et al., 2004].

There are several steps involved in the design science research process, including:

1. Identifying the problem: The first step in DSRM is to identify a specific issue or
challenge the research aims to address.

2. Developing a design: Once the problem has been identified, the next step is to
develop a design or artefact that addresses the issue and meets the identified needs.

3. Evaluating the design: The design is then evaluated through empirical testing or
other methods to determine its effectiveness and potential impact.

4. Refining the design: Based on the evaluation results, the design may be refined and

improved to address the problem and meet the identified needs.

5. Disseminating the results: The results of the DSRM study, including the design and
any insights or lessons learned, are then disseminated to the broader community
through publication in academic journals or conference proceedings.

This process is then repeated as needed until a satisfactory solution is found. Fig. 1 shows the
phases of the DSRM process model. The process model be modified to meet the requirements
of this research attempt.

3.1 The Adoption of DSRM
	
To adopt this method to teach kids to write code, the following steps have been followed:

Figure 1: DSRM Framework Adopted to Teach Kids How to Code

[Peffers et al., 2007,Aljawawdeh, 2019]

1. Identify the topics we want to address and select an approach. For example, choose
the issues that help kids learn how to write code and solve some problems
engagingly and effectively.

2. Develop clear and concise examples that support the research questions. For

example, ”How can we design a teaching method that helps kids learn to write code
effectively?”. That should be examined by monitoring the achievements of the
participant kids.

3. Conduct a literature review to understand the current knowledge on the topic. This

might include research on teaching coding to kids and studies on effective learning
methods in general. This can help to enrich the teaching methods we adopt, and also
it helps to learn from previous experiences.

4. Develop a design for a solution to the problem or opportunity. This might involve
creating a lesson plan, building a tool or platform for teaching coding or developing
a new teaching method.

5. Implement the design and test it with a group of kids. This might involve piloting

the teaching method in a classroom or online setting.

6. Evaluate the results and conclusions. This might involve collecting data on the kids’
learning progress and analyzing it to determine the effectiveness of the teaching
method.

To fulfil the previous steps, a set of lessons have been prepared using C# language, and the
lesson plan and materials have been reviewed by experts who work with kids to ensure that
they fit the level of these young children. There are a few reasons why C# might be a good
choice for teaching kids to code: • C# is a high-level programming language, meaning it is
easier to read and write than low-level languages like C or assembly. This can make it more
accessible for kids starting to learn to program:

• C# is a universal language that can be used to build various applications, including
games, web applications, mobile apps, and more. Kids can use C# to create exciting
and relevant projects.

• C# has a large and active community of developers, so many resources are available

to help kids learn the language and get support when needed. • C# is a statically-
typed language which checks for errors before the code is run. This can help kids
learn good coding practices and avoid common mistakes.

In conclusion, C# is a good choice for teaching kids to code because it is easy to learn,
versatile, and has a strong support community.

4. The Case Study: Teach Kids to Code with C#

This section describes the objective of this case study, the learning process of this case study,
the experiment design, and the mechanism to transfer knowledge to young learners.

4.1 The Intended Learning Objective

In this case study, kids will learn topics from basic programming skills until they learn how to
write a simple application, such as a calculator program, using a C# desktop application.
They will also learn how to test their code and display the results.

4.2 The Learning Process
	
For the case study, the following steps have been conducted:

• Step 1: Introduction to Programming
Before kids begin writing code, it’s essential to introduce them to the basics of
programming. This might include concepts such as variables, data types, loops,
functions, and controls such as Buttons, TextBox, Labels and Panels. Many examples

and exercises have been used to help kids understand these concepts and how they
can be applied to solve problems.

• Step 2: Designing a simple calculator application
Next, kids must decide what they want their calculator to do. This might include basic
arithmetic operations such as addition, subtraction, multiplication, and division and
more advanced features such as square roots, logarithms, or trigonometric functions.
In our experiment, the main focus was on basic arithmetic operations.

Once kids have decided on the features they want to include, they should design a
flowchart or pseudo code to outline the steps their program will follow. This will help
them think through the logic of their program and make it easier to write the code.

• Step 3: Writing the code

With a clear plan, kids can begin writing the code for their calculator program. They
should start by writing the program’s basic structure, including any necessary
functions and loops. Then, they can add the code to perform the specific calculations
they want.

• Step 4: Testing and debugging

As kids write their code, they should test it frequently to ensure it works as expected.
This might involve running the program, manually checking the results, or writing
additional code to test specific features. Kids encountering errors or unexpected
results should use debugging techniques such as print statements and error messages
to identify and fix the problem.

• Step 5: Displaying the results

Once the calculator program works correctly, kids can add code to display the results
in a clear and easy-to-read format. This might involve using print statements to show
the results in the terminal or creating a graphical user interface (GUI) to display the
results more visually appealingly.

• Step 6: Refining and improving the program

Kids can continue to refine and improve their calculator program by adding additional
features, optimizing the code for speed and efficiency, or making the program more
user-friendly. They can also use their program to solve real-world problems or create
interactive simulations.

4.3 Experiment Design
	
To conduct the proposed case study, the following materials were needed:

• Computer with an integrated development environment (i.e., IDE) installed, i.e.,
Visual Studio 2022 IDE was used.

• Material and examples were prepared to support the learning process.

A group of twenty kids participated in this experiment, and intensive training for five weeks
was conducted to teach the kids the prepared materials and prepare them to write real-life

applications. The age of kids ranges from eight to fourteen years old. The kids have sufficient
skills to use the personal computer and are fluent in arithmetic operations.

The experiment has been conducted on multiple iterations; in each iteration, a chapter of the
intended material has been provided, and it ended with a practical exercise.

4.4 Knowledge Transfer Strategy
	
Many different approaches and methods can be used to teach kids programming. Some
general strategies that may be effective include:

1. Use hands-on, interactive activities: Kids often learn best through handson, interactive
activities that allow them to explore and experiment with concepts [Kafai and Burke,
2017,Aljawawdeh and Nabot, 2021,Kafai et al., 2015]. Coding activities that involve
creating and building software or applications can be particularly engaging for kids
[Resnick et al., 2009].

2. Start with simple, visual programming languages: For younger children or those new

to programming, starting with simple, visual programming languages can be helpful
[Maloney et al., 2012]. These languages use blocks or other visual elements to
represent code, which can be easier for kids to understand and work with [Kafai et al.,
2015]. Examples of visual programming languages include Scratch [Resnick et al.,
2009, Maloney et al., 2012,Kafai et al., 2015] [Kafai et al., 2015].

3. Use examples and projects that are relevant and interesting: Children are more likely

to be motivated and engaged when working on relevant and exciting projects to them
[Law et al., 2016]. Consider using examples and projects that align with their interests
and hobbies [O’Shea and O’Keeffe, 2016,Aljawawdeh and Nabot, 2021].

4. Encourage experimentation and creativity: Encourage kids to explore and experiment

with different coding techniques and approaches (Wing, 2006). This can help them
develop their problem-solving skills and creativity [Papert, 1980].

5. Provide support and guidance: It’s important to provide kids with the support and

guidance they need as they learn to code [Law et al., 2016]. This might include
providing resources and materials, answering questions, and offering feedback and
encouragement [O’Shea and O’Keeffe, 2016].

6. The key to teaching kids programming is to provide a supportive and engaging
learning environment that encourages exploration, experimentation, and creativity
[Wing, 2006]. Fulfilment of the previous steps will help to collect data and do the
analysis.

5. Results and Analysis
	
There are a few different criteria that you could use to evaluate whether kids have learned a
C# course:

1. Understanding of the fundamental concepts of programming: Can the student explain
the basic concepts of programming, such as variables, loops, functions, and control
structures?

2. Ability to write, compile, and run C# code: Can the student write simple programs in

C#, using the correct syntax and following best practices for code organization and
style? Can they debug their code and identify and fix errors?

3. Knowledge of shared C# libraries and frameworks: Does the student understand how

to use standard libraries and frameworks, such as the .NET framework and the System
namespace, to perform tasks such as input/output and data manipulation?

4. Ability to solve problems: Can the student analyze a situation and design and
implement a solution using C#? Can they use appropriate data structures and
algorithms to solve problems efficiently?

5. Ability to work with a team: Can the student collaborate with others on a

programming project, using version control and other tools as needed? Can they
communicate effectively with their team members about their code and project
design?

6. Ability to learn new concepts: Does the student have the ability to learn new

programming concepts and technologies on their own, using online resources and
other materials?

Each participating student was examined against each point; the evaluation process included
tests, tasks and direct personal questions to measure the student’s understanding of the
material. Each point has been evaluated from 0 to 10. Fig. 2 shows the table of results, in
which the result of each student ranges from 0 to 10 against each Intended learning objective.
Note that the average achievement of the intended learning objectives (ILOs) was 74%, and
many kids achieved higher values in some outstanding goals. There were some weaknesses in
achieving some objectives. Still, the reasons behind that refer to the complexity of some
topics, lack of teamwork skills, short time of the course, and sufficient background of all
kids, which makes it difficult to solve some of the milestone tests. Fig. 3 shows a graphical
visualisation of the results.

Results show that teaching kids to program with high-level programming language is
challenging but worthwhile. Gains from this experiment are promising and encourage
teaching kids more technical topics in the future while monitoring their progress and
performance.

	
6. Conclusion
	
This article presents a case study on the methods and techniques for teaching kids how to
code using the programming language C#. This article answers the research question and
supports the hypothesis by presenting a case study on the effectiveness of using C# to teach
kids how to code.

The results of this case study suggest that using C# to teach kids how to code can
successfully introduce them to the fundamental concepts of programming. The case study
demonstrated that kids could learn C# and create simple programs, indicating that they could
grasp and apply the material practically. These findings are promising because they suggest
that C# can be an effective tool for teaching kids how to code and that kids can learn
programming skills at a young age. These results pave the way for further research and
development in coding education for kids. 74% of the learning objectives have been fulfilled.

In conclusion, learning how to code with C# can be a fun and rewarding experience for kids.
Following the steps outlined in this case study, kids can learn fundamental programming
concepts and start creating simple programs. As they continue to practice and build on their
skills, they will be able to tackle more complex projects and continue to grow as coders. With
patience, persistence, and a little creativity, kids can learn to code with C# and open up a
world of possibilities for their future.

Figure2: Tableofresults

Figure3: ChartofResults

References
	
Aljawawdeh, H. (2019). An interactive metaheuristic search framework for software service

identification from business process models. PhD thesis, University of the West of
England.

Aljawawdeh, H. and Nabot, A. (2021). Casl: Classical, asynchronous, and synchronous

learning model. towards a universal hybrid e-learning model in jordan universities. In
2021 22nd International Arab Conference on Information Technology (ACIT), pages
1–9. IEEE.

Barker, E., Hooper, S., and Lister, R. (2018). Visual programming languages for beginners: A

review of scratch and blockly. ACM Computing Surveys, 51(6):1–36.

Bryant, S., Hennessy, S., and Bell, L. (2016). The impact of coding on children’s learning and

development. Early Child Development and Care, 186(6):807–819.

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information systems

research. mis q 28 (1): 75–105.

Hockemeyer, C., Guzdial, M., and Hansen, C. (2019). The impact of programming languages

on student performance and engagement: A case study of scratch and python. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education,
pages 1237–1242.

Johnson, M. and Williams, E. (2018). The impact of coding education on children’s creativity

and innovation. Computers in Education, 32(1):78–85.

Kafai, Y. B. and Burke, Q. (2017). Computational participation: Teaching kids to create and

connect through code. In Emerging research, practice, and policy on computational
thinking, pages 393–405. Springer.

Kafai, Y. B., Fields, D. A., and Searle, K. (2015). Blockly: A visual programming

environment for novice programmers. ACM Transactions on Computing Education
(TOCE), 15(2):8.

Kelleher, C., Pausch, R., and Bowers, A. (2015). Inspiring a love of programming: A review

of scratch and its impact on children’s attitudes toward computers and programming.
ACM Transactions on Computing Education, 15(3):1–19.

Kim, S.-y. and Park, J.-s. (2017). The influence of coding education on children’s self-

confidence and social skills. Journal of Child Development, 48(3):662–671.

Law, E., Galley, R., and Bos, J. (2016). The impact of computer science education on

problem solving ability: a systematic review. Computer Science Education, 26(1):41–
82.

Maloney, J., Nash, N., Engel, R., Farrow, J., Simon, D., and Phillips, A. (2012). Blockly: A

language for building block programming tools. International Journal of Computer
Science Education in Schools, 2(1):7–26.

Margolis, J., Estrella, R., Goode, J., Holme, J., and Nao, K. (2017). Stuck in the shallow end:
Education, race, and computing. MIT Press.

O’Shea, T. and O’Keeffe, G. (2016). The role of collaborative coding in promoting teamwork

and collaboration among primary school students. Journal of Computer Science
Education, 26(1):25–45.

Papert, S. (1980). Children, computers, and powerful ideas. Harvester.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A design science

research methodology for information systems research. Journal of management
information systems, 24(3):45–77.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,

Millner, A., Rosenbaum, E., Silver, J., and Kafai, Y. (2009). Scratch: Programming for
all. Communications of the ACM, 52(11):60–67.

Smith, J., Brown, J., and Patel, P. (2019). The effects of coding education on children’s

problem-solving skills. Journal of Educational Psychology, 55(4):345–356.

Weintrop, D., Wilensky, U., Zawojewski, J. S., Bonasso, P., and Riedl, M. (2016). Computing

in k-12: A vision for the future. Communications of the ACM, 59(8):84–93.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3):33–35.

