
A Hybrid Method for Detecting Source-code Plagiarism in Computer Programming
Courses

Weijun Chen, Chenling Duan, Li Zheng, Youjian Zhao

Tsinghua University, China

0402

The European Conference on Education 2013

Official Conference Proceedings 2013

Abstract

The paper presents a hybrid method for detecting source-code plagiarism in computer
programming courses. For many programming courses, the students’ assignments are
in the form of electronic source files and it is difficult for the teacher to manually de-
tect the plagiarisms among the assignments. Our system can compare two source files
automatically and help to solve this problem. The principle of the system is summa-
rized: Firstly, the source files are processed with intension of filtering the noise ele-
ments such as header file include statements, comments, input/output statements and
string literals. Secondly, a feature-based detection component is proposed. For each
source file, a feature vector is generated which include physic metrics such as the
number of source lines and the number of total words, Halstead metrics such as the
statistics of source code operators, execution flows and operands. Then the distance
between two feature vectors is computed which is considered as the similarity be-
tween the corresponding source files. Thirdly, a structure-based detection component
is proposed. For each source file, the source code is transformed into a sequence of
well-defined tokens. Then to improve the computational efficiency each token is
transformed into a single character using a mapping table. The LCS (Longest Com-
mon Subsequence) is computed for each two strings, which is considered as the simi-
larity between the corresponding source files. Lastly, an integration component is
proposed which uses a two-stage strategy to combine the above two separate compo-
nents into one complete system. Experimental results show that our system can effec-
tively spot the suspect program copies, even when they have some kind of minor
modifications.

iafor
The International Academic Forum

www.iafor.org

1 Introduction

When teaching an introductory computer programming course, it is commonly agreed
that the emphasis of the course should be put on improving students’ skills of problem
analysis, algorithm design and coding. Therefore, in the practicing section, most
courses will require the students to complete a sufficient amount of programming
assignments and submit the corresponding source code files. However, this may bring
a potential problem to the instructor: the source-code plagiarism. Plagiarism occurs
when programming exercises are copied and transformed with very little effort from
other students. Although finding plagiarisms manually is possible in theory, it is much
too time-consuming in practice and very few instructors have the patience to
thoroughly search for plagiarisms. Therefore, a powerful automated searching tool is
being needed.

In this paper, we present a hybrid method for detecting source-code plagiarism
automatically in computer programming courses. It combines a feature-based
component and a structure-based component in one system.

The rest of the paper is organized as follows. In Section 2, we present the related
works on the automatic source-code plagiarism detection systems. Then we give a
detailed description of our system in Section 3. In Section 4, the evaluation results are
shown and discussed. Finally we conclude our work in Section 5.

2 Related Work

The previous source-code plagiarism detection systems can be roughly divided into
two types: feature-based and structure-based.

The first known plagiarism detection system was an attribute counting program de-
veloped by Ottenstein (1976). It uses the basic Halstead (1977) metrics (number of
unique operators, number of unique operands, total number of operators and total
number of operands) to compare two FORTRAN programs and if all the four values
coincide, the programs can be considered to be plagiarisms.

Other feature-based systems (Berghel &Sallach, 1984; Donaldson & Lancaster, 1981;
Faidhi & Robinson, 1987) employ a similar strategy. For each program, a set of dif-
ferent software metrics are extracted and they make up a feature vector that corre-
sponds to a point in an n-dimensional Cartesian space. The distance between two
feature vectors can be seen as the similarity degree of corresponding programs.

The feature-based systems are efficient because they only need to compute a limit
number of feature values for each program. However, they can hardly have very good
performance because they throw away too much structural information.

The structure-based systems compare the structures of two programs directly. The
basic idea is to convert each program into a stream of tokens and then compare these
token streams to find common segments. The comparing algorithm needs to be de-
signed carefully because it will determine the efficiency of the whole system.

Typical structure-based systems include Michael Wise’s YAP3 (1992), Alex Aiken’s
MOSS and Guido Malpohl’s JPlag (2000). The differences lie in the detection per-
formance, the run time efficiency and the user interface.

Generally speaking, the feature-based systems are more efficient and have relatively
lower performance, while the structure-based systems have better performance and
are less efficient, especially when dealing with a large data set (Verco &Wise, 1996).
Therefore a natural idea is to produce a hybrid system that combines both the struc-
ture and the feature comparison. For example, a hybrid method was proposed by
Donaldson & Lancaster (1981). In the first phase, it uses eight features and proposes
three different methods determine a similarity or difference factor. In the second
phase, each assignment is transformed into a statement order sequence and the se-
quences of each pair of assignments are compared to determine if the structures of the
assignments are similar enough to indicate plagiarism.

For the first author of this paper, he is teaching a computer programming course to
non-computer science students at Tsinghua University, China. In every semester,
there will be about 150 students enrolled in this class and in each week, the students
have to complete five or six programming assignments. Therefore, in order to detect
the plagiarisms in such a real situation, we have to consider the following aspects:
l We actually don’t need a “perfect” plagiarism detection system. As a teacher, the

more important thing is to educate the students not to cheat and let them know the
consequences of cheating. The plagiarism detection system is just an auxiliary
technical tool that helps us to find as many plagiarisms as possible in limited time.

l There needs to be a balance between effectiveness and efficiency. In every week,
we will have five or six programming assignments and for each assignment we
will receive 150 source code files. This is a large data set and the time efficiency
is more important to us.

l Although there are several free plagiarism detection tools are available, it is still
time consuming to use these tools. We have to prepare the data files in a local
machine and submit them to the servers. In fact, we already have a powerful E-
Learning platform for computer programming courses (Shi, Chen, Zhang and Luo,
2012). If we can integrate the plagiarism detection system into the platform, it
will be convenient to use and no extra time is required because all the data are al-
ready there.

3. The System

The source-code plagiarism detection system consists of five main components: the
pre-processing component, the feature-based component, the structure-based compo-
nent, the integration component and the main process component. Figure 1 shows the
framework of the system.

Figure 1. Framework of the system

3.1 Pre-processing Component

For each programming assignment, the students will submit the corresponding source
code files. These files can’t be compared directly because they contain many noise
elements that have negative effects on measuring the similarity between source files.
Therefore, we need a pre-processing component to filter out these noise elements.

Firstly, we need to filter out all the “header file include” statements. The following are
some of the examples:

#include <stdio.h>
#include <string.h>

For a valid C source file, the “header file include” statements are obviously necessary
because they will tell the compiler the correct prototypes of specified functions and
make the compiling go smoothly. However, these statements are meaningless when
computing the similarity value of two source files. Instead, they may have negative
effect. For example, a student may insert functionally useless “header file include”
statements in a source file on purpose to make it look different with others.

Secondly, we need to remove all the comments and blank lines from the source files.
Otherwise, one can easily fool the automatic plagiarism detection system by writing
fake statements in the comment area. For example,

sum = 0;

i = 1;

while(i <= 10)

{

 sum += i;

 i++;

}

/* fake code

r = 5;

PI = 3.1415;

area = PI*r*r;

*/

sum = 0;

i = 1;

for(; i <= 10; i++)

{

 sum += i;

}

From a programmer's point of view, the above two source segments are completely
the same. However, an automatic detection system may think they are different be-
cause the second source segment has three more “statements” (the first three state-
ments). Actually these statements are just comments and they have no effect on the
running of the program.

Thirdly, we need to remove all the input/output statements. These statements are
mainly used for user interface purpose and have few relationships with the core func-
tions of the program.

Lastly, all the string literals are removed from the source files. Strictly speaking, a
string literal is actually a type of data, not a statement. It is mainly used for program
debugging and user interface purpose. Just like the comments, the string literals in a
program can be easily used to fool the automatic plagiarism detection system. For
example, one can define a carefully designed long string literal that contains all types
of operators, operands and keywords in his program, and then this string literal will
cause big troubles to any type of detection systems.

3.2 Feature-based Component

The first step of designing a feature-based detection system is to propose a set of fea-
ture values. In our system, we employ two types of features: physical features and
Halstead’s software metrics.

Physical features are quite straightforward. They include file size, number of source
lines, number of words, number of characters, etc. In our system, we use two physical
features, i.e. number of source lines and number of words. These two features seem to
be more valuable than others.

Halstead features refer to the statistics of source code attributes, specifically, the us-
age of different identifiers. The identifiers in the C language consist of operators,
keywords, predefined identifiers and user defined identifiers. In our system, we will
consider six attributes of source code: arithmetic operator metrics, relational operator
metrics, logical operator metrics, execution flow metrics, operand metrics and the
number of different operands.

The feature extraction component in our system can transform a pair of source files
into two feature vectors. Then the next step is to compute their similarity, which is
summarized as follows:

Suppose we have two vectors G and H, we need to transform them into another two
vectors G’ and H’ using the following formulas:

 (1)

 (2)

gk: the k-th element of G
 hk: the k-th element of H

After the transformation, each element value is limited in the range of [0, 1].

Then the vector difference is computed using the following formula:

D = G’ - H’ (3)

The similarity of the two feature vectors is defined as:

 (4)

sen is the sensitivity coefficient whose value is in the range of [0, 1]. A smaller value
indicates that the similarity detection is stricter, i.e., if the vector difference is bigger
than a small value, the two source files are considered to be not similar to each other.
In our system, sen is set to 0.2.

Suppose the physical similarity is S1 and the Halstead similarity is S2, then the final
similarity of two source files is computed using the following formula:

S = S1 * W1 + S2 * W2 (5)

W1 and W2 are the corresponding weights, in our system, W1 = 0.2, W2 = 0.8.

3.3 Structure-based Component

A structure-based component is proposed to detect the source-code plagiarism auto-
matically in another way.

3.3.1 Identifier Tokens

The first step of the structure-based component is to transform the source code into a
sequence of well-defined identifier tokens. There are different kind of identifiers in a
C/C++ source file such as keywords, reserved words and user-defined identifiers.
They should be transformed into a set of standard tokens such that the modifications
of the variable names, type definitions and function names will have no effect on the
measurement of program similarity.

The paper defined the following identifier tokens for a C/C++ program:
l CLASS: user defined class in the program
l STRUCT: user defined struct type
l TYPE: data type
l OBJ: class instance
l FUNC: functions defined in the program
l VAR: data variables
l CON: constants

For an input source code file, all the identifiers are substituted with corresponding
tokens using a set of rules. For example, all the keywords such as short, int, long,
float, char and bool are substituted with the identifier token TYPE.

#include <stdio.h>

#include <stdlib.h>

struct student *creatLA();

struct student *creatLB();

void display(student *head);

struct student

{

 int id;

 int oper;

 student *pnext;

};

void display(student *head)

{

 student *p = head;

 while(1)

 {

 printf("%d\n", p->id);

 if(p->pnext == NULL)

 {

 break;

 }

 p = p->next;

 }

}

void main()

{

 student *headLA, *headLB;

struct STRUCT *FUNC();

struct STRUCT *FUNC();

TYPE FUNC (STRUCT * OBJ);

struct STRUCT {

TYPE VAR ;

TYPE VAR ;

STRUCT * OBJ ; }

TYPE FUNC (STRUCT * OBJ) {

STRUCT * OBJ = OBJ ;

while(CON)

{

if(OBJ . OBJ == CON)

{

break;

}

OBJ = OBJ . OBJ ;

} }

TYPE FUNC () {

STRUCT * OBJ , * OBJ ;

OBJ = FUNC () ;

OBJ = FUNC () ;

FUNC (OBJ) ; }

 headLA = creatLA();

 headLB = creatLB();

 display(headLA);

}

(a) A C program (b) The string of identifier tokens
Figure 2. An example of identifier token transformation

Figure 2(a) is an example C program. It will be transformed into a string of identifier
tokens that is illustrated in Figure 2(b) after all the substitution rules are applied se-
quentially.

3.3.2 Digitization of the Token String

To improve the computational efficiency, each token is transformed into a single
character using a mapping table. As we know, there are 10 digits, 26 lower case letters
(‘a’ ~ ‘z’) and 26 upper case letters (‘A’ ~‘Z’). Therefore, we totally have 62 single
characters. Figure 3 is a part of the mapping table.

asm 0 CLASS A

auto 1 STRUCT B

break 2 TYPE C
case 3 OBJ D

catch 4 FUNC E

const 5 VAR F

const_cast 6 CON G

continue 7 static H

default 8 switch I
delete 9 this J

Figure 3. Part of the mapping table

For example, the token string illustrated in Figure 2(b) will be transformed into the
following character string:

yB*E()yB*E()CE(B*D)CE(B*D,B*D)yB{CFCFB*D}CE(B*D){B*D=DR(G){m(D.
D==G){2}D=D.D}}CE(){B*D,*DD=E()D=E()E(D)}

It is obvious that this string is far shorter than the original token string, which means it
will need less processing time.

3.3.3 Similarity Measurement

For each two character strings, the LCS (Longest Common Subsequence) is used to
compute their similarity degree. When detecting the plagiarisms among source code
files, we should consider the fact that some students may make some minor modifica-
tions such as changing the order of function definitions. Therefore, the system divides

each character string into several blocks using the separator characters “{” and “}”.
The LCS is computed for each block in the string.

Figure 4. The LCS length algorithm
Figure 4 is the algorithm used to compute the LCS length of two strings s1 and s2. For
each block in s1, find the corresponding block in s2 that has the longest LCS length
with it and add that length to the value lcs_len, which is the LCS length of s1 and s2.
Finally, the similarity degree between s1 and s2 is computed using the following for-
mula:

3.4 Integration Component

Generally speaking, the feature-based methods are more efficient and have relatively
lower performance, while the structure-based methods have better performance and
are less efficient, especially when dealing with a large data set. In our system, we pro-
posed a hybrid method that combines both the structure and the feature comparison.
The algorithm is summarized in Figure 5.

Figure 5. The integration algorithm

4. Experimental Results

A series of experiments are made to verify our system and sound results are achieved.

Generally speaking, it is not likely for a student to submit a program that is exactly
the same as another student’s program. He may make some changes in the program
on purpose to make it looks different with the original one. Therefore, a good plagia-
rism detection system should be able to deal with these changes.

S1 input a pair of source files
S2 compute their similarity sim1 using the feature based

component
S3 if sim1 is lower than a threshold value,
 sim = sim1, go to S6
S4 otherwise, compute their similarity sim2 using the

structure based component
S5 sim = sim1*w1 + sim2*w2
S6 return (sim)

In the first experiment, for a given program submitted by a student, we modified some
functionally useless statements in it and made a “new” program. For example, we
added some comments and “header file include” statements, re-edited the program in
another style and used the blank spaces, carriage returns and indentation in another
way. However, when we used our system to measure the similarity of these two pro-
grams, the result was 1.0 which means they are regarded to be completely the same.

In the second experiment, we changed the names of different type of identifiers, such
as the variable names, function names and user-defined struct names. Again, the
measurement result was still 1.0. This is because the feature based component only
computes the numbers and distributions of operators and operands, it does not care
about the names of different identifiers. And in the structure based component, all the
user-defined identifiers are substituted with a set of standard tokens.

In the third experiment, we changed the structure of the code. For example, we
changed the order of some functions and substituted a function call with the body of
the function itself. The similarity degree was more than 0.9.

We also used a real data set to testify the system. The data set consists of a group of
source files submitted by the students in our class. There are 145 students and the
length of each source file is about 100~200 lines. Those pairs of programs that have a
relatively high similarity degree are examined by us manually. It turns out that for any
pair of programs whose similarity value is greater than 0.7, there are always exist
many code blocks that seem to be similar enough.

5 Conclusion
The paper presents a software tool that can help teacher to find the potential plagia-
risms among the vast number of programming assignments. It is a hybrid system that
combines two types of detection methods. The system consists of four main compo-
nents: the pre-processing component, the feature-based component, the structure-
based component and the integration component. Experimental results show that it
can effectively spot the suspect program copies, even when they have some kind of
modifications.

Ongoing and future work includes the further improvements of the system. For exam-
ple, the user interface is a big problem. Currently the output results are saved in an
Excel file, this is not convenient for the users to understand the results, especially
when the data set is big. We need to develop a graphic user interface to present the
results.

References

1. Ottenstein, K. J. 1976, An algorithmic approach to the detection and prevention of
plagiarism. ACM SIGSCE Bulletin, 8(4), 30-41.

2. Halstead, M. H. 1977, Elements of Software Science. Operating and Programming
Systems Series. Elsevier North-Holland, New York.

3. Berghel, H. L. and Sallach, D. L. 1984, Measurements of program similarity in
identical task environments. ACM SIGPLAN Notices, 19(8), 65-76.

4. Donaldson, J. L., Lancaster, A. M. and Sposato, P. H. 1981, A plagiarism detection
system. ACM SIGSCE Bulletin, 13(1), 21-25.

5. Faidhi, J. A. W. and Robinson, S. K. 1987, An empirical approach for detecting
program similarity within a university programming environment. Computers and
Education, 11(1), 11-19.

6. Wise, M. J. 1992, Detection of similarities in student programs: YAP’ing may be
preferable to Plague’ing. ACM SIGSCE Bulletin, 24(1), 268-271.

7. Aiken, A. MOSS (Measure Of Software Similarity) plagiarism detection system,
http://www.cs.berkeley.edu/ ˜moss/, University of Berkeley, CA.

8. Prechelt, L., Malpohl, G. and Phlippsen M. 2000, JPlag: Finding plagiarisms among
a set of programs. Technical Report, University of Karlsruhe, Germany.

9. Verco, K. K. and Wise, M. J. 1996, Software for detecting suspected plagiarism:
Comparing structure and attribute-counting systems. In John Rosenberg, editor,
Proc. of 1st Australian Conference on Computer Science Education, Sydney.

10. Shi, K., Chen, W., Zhang, L. and Luo, L. 2012, Kaleidia: A Practical E-Learning
Platform for Computer Programming Courses. In Proceedings of the Canada Inter-
national Conference on Education (CICE-2012), University of Guelph, Canada.

Susan Grider Montgomery, HEALTH COMES FIRST!!!, USA

