
Development of Tools to Support the Creation of Programming Test Questions

Takashi Kohama, Tokyo Denki University, Japan
Tatsuyuki Takano, Kanto Gakuin University, Japan
Osamu Miyakawa, Tokyo Denki University, Japan

The Barcelona Conference on Education 2023
Official Conference Proceedings

Abstract
The purpose of this research is to support the creation of programming test questions. Source
code, class diagrams, specification tables and execution results are often used in
programming test questions. In this case, these are related. Therefore, when these are created,
the contents must match. However, when correcting a part, it is easy to make mistakes such
as forgetting to correct. Therefore, we try to solve it by describing the information of the test
questions in the answer source code. This paragraph describes programming test question
creation support tools. This research targets Java language programs. First decide on the
subject of the test question. Next, create the source code for the answer and write the test
questions and specifications in Javadoc. Finally, run the tools. The tools automatically create
class diagrams, specification tables, and execution results from the source code for the
answer. In addition, these contents are combined into one and output as a PDF. The software
used in this tool is Java, JavaParser, and LaTeX. The LaTeX macros "listings" and "pgf-
umlcd" were also used. JavaParser analyzes the source code. The analysis result is converted
to a class diagram in pgf-umlcd format. Javadoc method comments are converted to
specification tables. Javadoc class comments are converted to LaTeX-style test question text.
The developed tools made it possible to output programming test questions in PDF format.
The test questions consist only of the source code with Javadoc.

Keywords: Programming Education, Source Code, Programming Practice Support System

iafor
The International Academic Forum

www.iafor.org

Introduction

In recent years, the demand for programming education has been increasing. At primary
educational institutions, education is provided to develop "programming thinking skills." In
middle and higher education institutions, education on problem solving through programming
is provided. From 2022, programming education will be compulsory in high schools. In
universities, programming education has begun as part of general education.

In information science departments, there are many subjects for programming education.
Information science students aim to become programmers or software engineers.
Programming experience and programming skills are also required. Programming courses
often include not only lectures but also practical training. In programming practice, it is
effective for the instructor to provide appropriate guidance depending on the learner's level of
proficiency and the progress of the task. However, when there are many learners, desk-based
instruction alone is insufficient. Therefore, various programming practice support systems
have been proposed (Azuma, H., et al., 2020; Zaffalon, F., et al., 2022). Also, regarding the
test questions used in the practice, it is considered effective to tailor the questions to the
learners. Systems based on item response theory have been proposed for some time. Such a
system requires test questions of various difficulty levels.

In this research, we support the creation of test questions in a programming exercise support
system. The target test questions are descriptive.

When creating programming test questions, source code, class diagrams, specification tables,
and execution results are often used. In this case these are related. Therefore, when creating
these, it is necessary to match the contents. However, when making partial corrections, it is
easy to make mistakes such as forgetting to make corrections. Therefore, we will try to solve
this problem by writing the test question information in the answer source code.

This paper describes a method for supporting test question creation and its results.

Overview of Programming Practice Support System

The programming practice support system is shown in Figure 1. This system consists of
creating test questions, testing, evaluation, feedback, creating practice questions, and
practice. The test confirms the learner's level of proficiency. In evaluation, learners' answers
are scored. The evaluation results are feedback to the learner. When creating practice
assignments, explanations and assignments are created according to the learning level of the
learner. Learners solve practice tasks and submit them for evaluation. By repeating these
exercises, learners' understanding of programming will be improved.

Previously, the authors attempted to automate grading and feedback to support learners'
practice (Takano, T., et al., 2023).

This paper describes the creation of test questions.

Figure 1: Overview of programming practice support system.

Creating Programming Test Questions

The target programming test question is to write a program from a specification. In the
proposed test question creation method, test question information is written in the source
code. The reason is to centrally manage test questions and source code. Then, it generates a
class diagram, specification table, and execution results from the source code.

Previously, when including class diagrams in test questions, the source code and class
diagrams were created separately. Therefore, when modifying a test question, it was
necessary to modify both the source code and the class diagram.

The proposed method maintains the consistency of the source code, class diagram,
specification table, and execution results. The text of the test question is written in a comment
in the source code. At this time, attributes are added to the comment by using "tags." This
attribute makes it possible to specify test question headings, class diagrams, etc.

The advantage of the proposed method is that test questions can be created using only text.
Also, since information about test questions is written in comments, the source code can be
compiled and executed.

How to Use the Tools

This section describes how to use the tools. First, decide on the subject of the test question.
Next, create the source code for the answer and write the test questions and specifications in
comments. An example of the source code is shown in Figure 2. Finally, run the tool.

The tool automatically creates class diagrams, specification tables, and execution results from
the source code. Then, the contents are combined into one and a PDF file is output. Figure 3
shows an example of the generated PDF.

Figure 2: An example of the source code for the answer.

Figure 3: An example of the generated PDF.

Implementation of Tools

This section describes the implementation. The language of the programming test questions is
Java. As an existing technology, we use the idea of Javadoc. The software used is Java,
JavaParser, and LaTeX. Also, use the LaTeX macros ''listings'' and ''pgf-umlcd.''

! Java

Java (version 8) is used for tool development. Basic file operations, reading and writing
files are done using standard libraries. Other software is called from processes.

! Javadoc

Javadoc is a documentation system. Author adds comments to Java source code according
to Javadoc rules. Javadoc generates HTML-format API documentation from Java source
code. The tools use extended Javadoc tags.

! JavaParser

JavaParser is a library that creates abstract syntax trees from Java source code.
Application software uses JavaParser to parse Java source code and process syntax
elements.

! LaTeX

LaTeX is a document processing system that is an extension of the typesetting system
TeX. LaTeX creates reports, books, etc. from text written in markup languages. It is
possible to import figures, tables, etc. using macro. The tool is used to output test
questions to PDF. The LaTeX macro "listings" is used to display source code.
Additionally, ''pgf-umlcd'' is used to create class diagrams.

Test Question Generation Details

Details of data conversion by the tools are described below. An example of data conversion is
shown in Figure 4.

Figure 4: An example of data conversion by the tools.

Figure 5: An example of a TeX file.

! Generate Class Diagram

The source code is parsed by JavaParser. After that, the instance variables and method
information are extracted, and a TeX file is generated in the LaTeX macro "pgf-umlcd"
format. An example of a TeX file is shown in Figure 5. TeX files are used to generate text
for test questions.

! Generate API Specification Table

The source code is parsed by JavaParser. Then, the information in the Javadoc method
comments is extracted and a TeX file is generated in LaTeX tabular format. TeX files are
used to generate text for test questions.

! Generating Execution Result

The source code is compiled. If the class file contains a main method, it will be executed
and the standard output will be output to the file. A TeX file is generated in the LaTeX
"execution result" format. The "execution result" format is defined separately using a
LaTeX macro. TeX files are used to generate text for test questions.

! Generating Source Code Diagrams

The Javadoc part of the source code will be deleted. A TeX file in the LaTeX macro
"listings" format is generated. TeX files are used to generate text for test questions.

! Generation Text for Test Questions

The source code is parsed by JavaParser. Then, the information of the Javadoc class
comments is extracted. The tag in the comment (keyword written with "@" at the
beginning) is analyzed. Details of the tags are shown in Table 1. The text of the test
question is constructed according to the tag information, and a TeX file is generated. The

TeX file is compiled with LaTeX. Class diagrams, specification tables, execution results,
and source code are integrated. A PDF file of the test questions will be generated.

Table 1: Details of the tags.

Tag Detail
@question Write the question heading and question text. The

question number is automatically counted and auto-
incremented.

@subquestion Write the sub-question heading and question text. The
sub-question number is automatically counted and auto-
incremented.

@make.inputClass Describe this when arranging a class diagram. The
position and size of the figure can be adjusted using
parameters. For example, "align center" causes
centering. "scale 1.5" makes the figure 1.5 times larger.
Also, multiple class diagrams can be placed.

@source Write this when placing the source code. Specify the file
name with the parameter. The view of the source code
can be specified using the LaTeX macro "listings".

@execution Describe this when placing the execution results.
Specify the class name as a parameter. The view of the
execution results can be specified using a LaTeX macro.

@api Describe this when placing the API specification table.
Specify the class name as a parameter. Table views can
be specified using LaTeX macros.

@img Describe this when placing an image. Specify the png or
jpg image file name with the parameter.

Experiment

It was actually used in the programming subjects shown below.

! Computer Programming III Assignment Exercises (2022/10/31)
! Computer Programming III Achievement Test (2022/12/22)
! Computer Programming III Supplementary Examination (2023/1/16)
! Computer Programming II Comprehensive Exercise 3 (2023/5/25)
! Computer Programming I Comprehensive Review 1 (2023/7/4)

Figure 6-8 shows an example of test questions actually used in computer programming
(Japanese) (PDF).

Access modifiers (visibility notation) in class diagrams can be omitted. The class diagram in
Figure 3 includes access modifiers. The class diagrams in Figures 6 and 7 omit the access
modifiers in the class diagram.

In the PDF of the test questions, there were no mistakes between the source code, class
diagram, specification table, and execution results. The results used in the exercise had a typo
in the text of the test question, but there were no other flaws.

Figure 6: An example of test questions actually used (Japanese) (PDF) (page 1,2).

Figure 7: An example of test questions actually used (Japanese) (PDF) (page 3,4).

Figure 8: An example of test questions actually used (Japanese) (PDF) (page 5,6).

Conclusion

The purpose of this research is to support the creation of programming test questions. In the
proposed test question creation method, test question information is written in the answer
source code. The test questions are only source code with Javadoc. Then, it generates class
diagrams, schedules, and execution results from the source code.

The developed tools have made it possible to output programming test questions in PDF
format. The created test questions were actually used in programming exercises. As a result,
there were some typos, but there were no defects.

A future challenge is to create practice questions tailored to the learners for the programming
practice support system.

Acknowledgements

This study was supported by JSPS KAKENHI (grant number: JP21K02809).

References

Azuma, H., Takenouchi, H., Takano, T., Miyakawa, O., & Kohama, T. (2020). Study on

Computer-Adaptive Testing: Proposal of a Scaffolding Tool. The Asian Conference
on Education 2020 Official Conference Proceedings, 289-298.

Javadoc. https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/index.html

JavaParser. https://JavaParser.org/

LaTeX. https://www.latex-project.org/

Listings. https://ctan.org/pkg/listings

Pgf-umlcd. https://ctan.org/pkg/pgf-umlcd

Takano, T., Miyakawa, O., & Kohama, T. (2023). Development of a Tool to Analyze Source

Code Submitted by Novice Programmers and Provide Learning Support Feedback
With Comments. The Asian Conference on Education & International Development
2023 Official Conference Proceedings, 777-789.

Zaffalon, F., Prisco, A., Souza, D. R., Teixeira, D., Paes, W., Evald, P., Tonin, N.,

Devincenzi, S., & Botelho, S. (2022). A Recommender System of Computer
Programming Exercises based on Student’s Multiple Abilities and Skills Model. 2022
IEEE Frontiers in Education Conference (FIE).
https://doi.org/10.1109/FIE56618.2022.9962646

