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Abstract  
High-level synthesis tools have been drawing attention because we can reduce design 
costs. However, it seems that we cannot consider circuit timing when we design 
circuits. In this paper, we present the design of a versa writer control chip with NSL 
(Next Synthesis Language). The versa writer consists of our control chip, 24 RGB 
LEDs, a clock generator, battery and an I2C serial EEPROM. We place the LEDs in-
line to make the vertical line of the picture and characters. We utilize the human 
afterimage to make the images on the air. The inline LEDs will display the vertical 
line one by one for a short period. When users shake the versa writer, the afterimage 
of the inline LEDs makes the pictures. We store the data of the pictures in ROM in 
advance. We designed the control circuits of LED and ROM with NSL. We checked 
the operation of the versa writer on FPGA. We succeeded in displaying of the pictures. 
Our result indicates that we can develop a critical timing system with the high-level 
synthesis language. Then, we designed a layout of the circuit with an open source 
EDA tool Alliance. We fabricated a prototype chip from the layout. 
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1. Introduction 
 
We can program logic circuits on the device FPGA (Field Programmable Gate Array). 
Hardware processing with FPGA is lower power consumption and faster processing 
speed than software processing with CPU. Thus FPGA has been used in many fields. 
As an example, Microsoft has used servers equipped with FPGA, and it has speeded 
up Bing search engine. In financial field, HFT (High-Frequency Trading) has worked 
on FPGA. Image processing and communication processing also have been speeded 
up like these. In the future, application of these to artificial intelligence is expected. 
 
We generally used some RTL (Register Transfer Level) descriptions such as Verilog 
HDL and VHDL when we design circuits. However, there is a problem that RTL 
descriptions take a long time when we program complex processing. Therefore, high-
level synthesis tools have been drawing attention because we can reduce design costs. 
We design circuits with high-level synthesis languages. The high-level synthesis tools 
convert the circuits into RTL descriptions. Many researchers develop a system with 
the tools. By way of example, as tools based on C, there have been CoDeveloper 
(Ohno, Nakahara, Izumi, & Lin, 2014; Kawai & Izumi, 2014), Bach system (Nagai, 
Kambe, & Fujita, 2014), Cyber Work Bench (Sugimoto, Miyajima, Kuhara, Mituishi, 
& Amano, 2014), Vivado (Georgopoulos et al., 2016; O’Loughlin, Coffey, Callaly, 
Lyons, & Morgar, 2014), and so on. As tools based on Java, there have been 
JavaRock (Miyoshi & Funada, 2011), MaxCompiler (Fukui & Fujita, 2011), and so 
on. In addition, as tools based on Python, there have been PolyPhony (Sinby 
Corporation, n.d.), and so on. 
 
Circuit descriptions used the high-level synthesis languages are easy because the 
circuit descriptions have a higher level of abstraction than the RTL descriptions. 
However, in the case of using the languages, it seems that we cannot have considered 
circuit timing when we design circuits. Thus we developed a system used a high-level 
synthesis language NSL (Next Synthesis Language). Here we present that we can 
develop a critical timing system with the high-level synthesis language. To achieve 
this goal, we design a versa writer control circuit with NSL. As another problem, it 
seems that we cannot have designed chip layouts with these languages. Therefore, we 
designed a layout with an open source EDA (Electronic Design Automation) tool 
Alliance. Alliance generates chip layouts consistently after converting NSL into RTL 
descriptions. Here we present that the tool can generate chip layouts from the high-
level synthesis language. To demonstrate this point, we fabricate a versa writer 
control prototype chip with a generated layout. 
 
2. Methods 
 
2.1. Specification of NSL 
 
NSL is the hardware description language (HDL) developed by Overtone Corporation. 
Unlike existing HDL, behavior level descriptions are possible. It is relatively easy to 
learn NSL because the syntax of NSL is like C. It is possible to convert to Verilog, 
VHDL, and SystemC with the tool NSL Core. Thus we can perform logic synthesis 
and simulation with NSL. 
 
 



 

2.2. Specification of the prototype chip 
 
Fig. 1 shows the specification of our prototype chip. In the case of CMOS process of 
our chip, the minimum gate length is 2µm as well as the chip has a layer of 
polysilicon gates and two layers of aluminum wiring. The chip size is 3.2mm square, 
but we cannot design any circuits in the area with Input/Output pins and so on. Thus 
we can design layouts in only 2.5mm square area. The layout area cannot contain 
large circuits because the chip size is small and a lot of fabricating is by hand. 
 

 
Figure 1   The specification of our prototype chip 

 
2.3. Specification of a versa writer 
 
Fig. 2 shows the specification of a versa writer. The versa writer is a device shaped 
like a rod. Some LEDs are lined up on the versa writer. We used 24 RGB LEDs. 
When we shake the versa writer in the dark, an afterimage makes pictures and 
characters. The afterimage is like a pixel art. We stored data of the pictures and 
characters in an I2C serial EEPROM in advance.  
 
We explain an operating principle of the versa writer. First, once a versa writer 
controller transfers the first line of data, the LEDs turned on as the first data. Then, 
the controller transfers the second line of data once we shake the versa writer only a 
little. After transferring the second data, an afterimage leaves the first data, and the 
LEDs turned on as the second data. The afterimage makes pictures and characters by 
repeating this processing for a short period. 
 



 

 
Figure 2   The specification of a versa writer 

 
2.4. Structure of versa writer 
 

 
Figure 3   The structure of the versa writer 

 
Fig. 3 shows the structure of the versa writer. The versa writer control circuit transfers 
data to RGB LEDs. We store the data in an EEPROM. The circuit changes a lighting 
pattern of LEDs whenever 1kHz start signal rises. We use RGB LEDs WS2811 and 
an EEPROM 24FC1025. Both LED and ROM operate at 400kHz. We have to reduce 
the circuit scale because we fabricate a versa writer control prototype chip. Thus we 
have to reduce the number of registers in the circuit. We do not have to use any 
buffers because LEDs and ROM operate at the same timing. 
 
2.5. RGBLED control circuit 
 

 
Figure 4   LED control circuit 

 
A LED control circuit is described in Fig. 4. Once a ROM circuit transfers data as 
led_data, the circuit outputs a square wave. The wave corresponds to the data. In the 



 

case of the LED, a wave of 50% duty cycle is 1, and one of 12.5% duty cycle is 0. We 
generate the wave with a counter. The counter synchronize with a 3.2MHz clock 
because transferring a wave has to synchronize with a 400kHz clock. Data outputted 
to the LED is 24bit. The data contains 8bits of red data, 8bits of green data and 8bits 
of blue data. A LED is turned on or off once the circuit transfers 24bits of data to the 
LED. As an example, the LED is turned on in red once the circuit transfers 0xFF0000. 
In addition, we can connect more than one LED in the way of cascade connection. 
The circuit can output each data to all LEDs because the LEDs have a microcomputer. 
The circuit has to output a reset signal for over 50µs after the circuit outputs as many 
data of 24bits as the number of the LEDs connected. The circuit decides whether it 
outputs the wave or the reset signal. The circuit transfers the wave when led_enable is 
1, and it transfers the reset signal when led_enable is 0. 
 
2.6. EEPROM control circuit 
 

 
 

Figure 5   A state transition diagram of a ROM control circuit 
 
Fig. 5 shows a state transition diagram of a ROM control circuit. There are SDA 
(Serial DAta) signal and SCL (Serial CLock) in the ROM. We use SDA signal for 
sending commands, and we use it for sending and receiving data. The ROM sends and 
receives a bit of a command or a data at a time since the ROM uses serial 
communication. The circuit outputs 400kHz clock to SCL signal. 
 

 
Figure 6   A wave of start/stop condition 

 
The circuit sends a start data to ROM in the START state. The way of sending the 
start data is that SDA signal is changed to LOW from HIGH while SCL signal is 
HIGH as indicated in Fig. 6(a). The circuit sends a stop data to ROM in finishing 
processing. The way of sending the stop data is that SDA signal is changed to HIGH 
from LOW while SCL signal is HIGH as indicated in Fig. 6(b). 
 



 

 
Figure 7   The format of the control byte 

 
During the COMMAND state, the circuit sends information about doing now. The 
circuit uses a control byte for sending information. Fig. 7 shows the format of the 
control byte. First, the circuit sends 4bits of the control code ‘1010’, then selects a 
block of ROM. We select 0 when we want to use the former half of blocks, and we 
select 1 when we want to use the latter one. If we connect more than one ROM, we 
specify next 2bits of an identifier to select a ROM. Finally, we select whether reading 
or writing. In first COMMAND state, we select writing to specify a reading address. 
In second and subsequent, we select reading to read data. The circuit receives ACK 
(Acknowledgement) signal from ROM after sending the control byte. 
 
The state of the circuit transitions to the INIT state from first COMMAND state. 
During the INIT state, we specify an initial address of reading data. The circuit sends 
8bits of a lower address after sending 8bits of an upper address. The circuit receives 
ACK signal after each sending the address. 
 
The state of the circuit transitions to the RUN state from second and subsequent 
COMMAND state. During the RUN state, the circuit receives 8bits of data in order 
from the initial address. The circuit sends ACK signal after receiving 8bits of the data. 
The circuit finishes the processing after receiving as many data as the number of 
LEDs connected. After the lapse of 1ms, the circuit begins the processing with the 
START state and receives the following data. By repeating the state transition, the 
circuit can change data for sending to LEDs at the same time as we shake the versa 
writer only a little. 
 
2.7. Flow of designing layouts 
 

 
Figure 8   The flow of designing layouts 



 

Fig. 8 shows the flow of designing layouts. We use the open source EDA tool 
Alliance for designing layouts. A high-level synthesis tool NSL2VH convert NSL 
descriptions circuit into VHDL descriptions because Alliance uses VHDL. VASY 
convert into Alliance format VHDL descriptions. BOOM performs logical 
compression, and BOOG generates a netlist. The netlist corresponds to a cell library. 
The cell library contains cell patterns of various circuits, for example, an inverter, an 
AND circuit, an OR circuit, a flip-flop circuit and so on. The netlist is descriptions 
how to connect these cell patterns. Then LOON optimizes the netlist. SCL generates a 
virtual layout, and S2R generate a real layout according to a conversion rule. 
 
3. Results 
 
First, we designed a layout of our circuit. We fabricated a prototype chip of only the 
LED control circuit because the layout area could not contain the whole of the versa 
writer control circuit. Fig. 9 shows the chip layout. We implemented the ROM control 
circuit on MAXV, and we connected the circuit to the LED control chip. 
 

 
Figure 9   The chip layout of the LED control circuit 

 
We implemented the LED control circuit on DE0-CV, and we tested the circuit before 
fabricating the prototype chip. We performed logic synthesis with Quartus II after 
converting NSL into Verilog. Fig. 10 shows the test result. It can be seen that the 
circuit output a square wave of 12.5% duty cycle when SDA signal is 0. In addition, it 
can be seen that the circuit output one of 50% duty cycle when SDA signal is 1. We 
connected the circuit to MAXV, and we checked the operation of the versa writer. Fig. 
11 shows the operation result. An afterimage makes characters in the dark. Then we 
fabricated the prototype chip, but we are checking the operation of the chip. 
 
Accordingly, it is possible to say that we can develop critical timing systems with 
NSL. We could also design the layout consistently. However, it remains an open 
question whether the method is effective or not because we cannot have tested the 
prototype chip yet. 
 



 

 
Figure 10   The test result of the versa writer control circuit 

 

 
Figure 11   The operation result of the versa writer 

 
4. Discussion and Conclusion 
 
Our goal in this paper has been to present that we can develop a critical timing system 
with the high-level synthesis language. In addition, another goal has been to present 
that we can also generate chip layouts from the high-level synthesis language. By 
designing the versa writer control circuit, we presented that we can develop the 
critical timing system with the language NSL. The considering timing of circuits has 
received little attention in previous studies. However, as a result of our development, 
it has come to light that we can develop not only arithmetic processing but also such a 
system with the high-level synthesis language. About the result of designing the 
layout, we cannot have tested the prototype chip yet. In the future, we need to test the 
chip because we need to establish the usefulness of the language NSL and the tool 
Alliance. Then, we will aim to fabricate the one-chip from the whole of the versa 
writer control circuit. It remains a challenge for future research to design layouts 
consistently from modeling languages. 
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