
 

Performance Evaluation of TCP/IP vs. OpenFlow in INET Framework Using 
OMNeT++, and Implementation of Intelligent 

Computational Model to Provide Autonomous Behaviour 
 
 

Pakawat Pupatwibul, University of Technology Sydney, Australia  
Ameen Banjar, University of Technology Sydney, Australia  
Robin Braun, University of Technology Sydney, Australia 

 
 

The Asian Conference on Technology, Information and Society 
Official Conference Proceedings 2014 

 
 

Abstract 
Analysing performance of transmitting data from a source to a certain destination is 
an interesting task. One of the most reliable networking protocol suites is the 
Transport Control Protocol and the Internet Protocol (TCP/IP), which will be studied 
against a new management paradigm called Software Defined Networking (SDN). 
SDN is an emerging programmable network architecture, where network control 
plane is decoupled from forwarding plane. SDN forwarding methods are based on 
flows, which operate in contrast to conventional routing methods, such as TCP/IP 
routing table and MAC learning table. Moreover, OpenFlow protocol has efficient 
forwarding methods to push L2-L4 functions which are simplified into a Flow-
Table(s) abstraction. This paper discusses the relationship between the processes of 
forwarding packets in conventional IP routing table vs. OpenFlow-table and evaluates 
the performance between both implementations using INET framework in 
OMNeT++. While TCP performs slightly better than OpenFlow with respect to mean 
round trip time (RTT). The results also proved the correctness of OpenFlow 
implemented simulation model. Finally, we propose a Distributed Active Information 
Model (DAIM) within OpenFlow to support an autonomic network management. 
 
Keywords: OpenFlow, Network Performance, TCP/IP, Software- Defined Networks, 
OMNeT++. 
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Introduction 
In the last few years network technologies have been improved significantly in 
performance, complexity, functionality and other aspects, because of current needs 
and necessities of the modern world. The Internet protocol suite, widely known as 
TCP/IP, is a networking model and the basic communication language or protocols 
used to connect hosts on the internet. TCP/IP is the best known protocol suits today 
because of the successful development of the internet, and thus useful to study the 
behaviours of this protocol further, by making use of simulations. 
 
The Transmission Control Protocol (TCP) and the Internet Protocol (IP), commonly 
known as the TCP/IP standard, is widely used for network communications. TCP/IP 
attempts to make efficient use of the underlying network resources, by specifying how 
data should be transmitted, formatted, addressed, routed and received at the 
destination (Forouzan, 2002). TCP/IP was developed to support maximum throughput 
over many kinds of different networks. Although TCP/IP supports many current 
network services, it is not efficient for the requirements of business needs and end 
users. This has led to the development of alternative networking architectures, and the 
introduction of Software-Defined Networking (SDN). 
 
However, OpenFlow is still not widely standardised yet because each year Open 
Network Foundation (ONF) has introduced newer versions including improved and 
extra functionalities. The latest version is known as OpenFlow specification 1.4 
(ONF, 2012). The evolution of OpenFlow protocol versions are kept experimenting 
within labs. This chapter compares the performance of TCP/IP with the newly 
emerging OpenFlow standard for software defined networking. 
 
A variety SDN approaches have been developed, but there is only limited information 
on the performance of each, and realistic performance comparisons are not widely 
available. Simulation tools such as the OMNeT++ INET Framework are suitable for 
the task of designing, building, and testing network architectures, and provide 
practical feedback when developing real world systems (Varga, 2001). Such 
simulation tools allow system designers to determine the correctness and efficiency of 
a design before a system is deployed. Simulators also enable the evaluation of the 
effects of various network metrics, and provide mechanisms to obtain results that are 
not experimentally measurable on larger geographically distributed architectures. 
However, very few performance evaluations of OpenFlow architectures using 
simulation tools such as OMNeT++ INET Framework have been published (Varga, 
2010 & Varga, 2012). 
 
The performance comparison simulates OpenFlow and TCP/IP networks using the 
OMNeT++ INET Framework discrete events network simulator. By analyzing key 
network metrics including round-trip-time (RTT) and data transfer rate (DTR), the 
results indicate that OpenFlow performed slightly better than TCP/IP in this analysis. 
The results also proved the correctness of OpenFlow implemented simulation model. 
 
Thus, this paper evaluates the performance of TCP and OpenFlow implementation in 
INET framework 2.0 using OMNeT++. In addition, the paper covers a number of 
multiple running from the simulation to preserve accuracy of the simulation results. 
The remainder of this paper is organized as follows. Sect. 2 describes the motivations 
of the study. In Sec. 3, we introduced the background and overview of TCP/IP and 



 

OpenFlow networks. We present more details of related works on network simulation 
and emulation tools in Sect. 4. In Sect. 5, the performance of TCP/IP vs. OpenFlow is 
evaluated in the simulations. Section 6 proposes the DAIM model within OpenFlow 
to support an autonomic network management. Finally, Sect. 7 concludes this work. 
 
Motivations 
OMNeT++ can be applied to different network scenarios, topologies, behaviours and 
environments or other application fields for different purposes. Then, it can be studied 
and analysed to see how the system is functioning and performing. For example, 
applications of networking simulation area include network traffic, data transfer rate, 
packet counts and round trip time for packets transmission. OMNeT++ will be the 
first step for Australia when attempting to implement a new network infrastructure 
such as OpenFlow. OMNeT ++ is easy to simulate geographic distance and help 
predict how that would affect the behaviours of this new infrastructure, when 
considering different technologies or products running on different software. Thus, we 
have used OMNeT++ modules to design, simulate, verify, and analyse the 
performance of different networks protocols, where in this context we used TCP/IP 
and OpenFlow. 
 
OpenFlow can offer network administrators the flexibility to manage, configure and 
optimise network resources, and thus can effectively control the network behaviour in 
real-time as well as deploying new network applications and services. OpenFlow-
Based SDN can present several substantial benefits including centralised management 
and control of network devices from various vendors, the direct manipulation of new 
network services without having to configure each node individually, 
programmability by administrators, enterprises, users, and software vendor, and the 
ability to provide centralised and automated management which increases network 
security and reliability. 
 
Currently, a related work of integrating the OpenFlow protocol version 1.2 in the 
INET framework for OMNeT++ has been developed. The motivation is to test the 
correctness of their implemented model in overall compared to TCP modules in 
INET, and focus especially on the performance of controller’s placement based on a 
variety of performance metrics in the investigated network. 
 
Background of TCP/IP and OpenFlow network  
This section introduces Transmission Control Protocol/Internet Protocol (TCP/IP) and 
provides a quick introduction to OpenFlow-Based SDN, discussing what they are all 
about in an overall context. We begin by defining both TCP/IP and OpenFlow 
network in the most general terms. 
 
A. Overview of TCP/IP 
The Transmission Control Protocol and Internet Protocol (TCP/IP) is a suite of 
communication protocols widely used to connect hosts on the Internet and on most 
other network communications as well (Fall et al., 1996). TCP operates at the 
transport layer, the middle layer in the seven layers of the OSI model (Jeroen et al., 
2004). This layer maintains reliable end-to-end communications between network 
devices. On the other hand, IP is a network layer protocol, which is responsible for 
packet forwarding including routing across intermediate routers (see Table 1.). 



 

Because TCP/IP was developed earlier than the OSI 7-layer mode, it does not have 7 
layers but only 4 layers. 
 

TCP/IP Protocol Suite TCP/IP SDN 

FTP, SMTP, Telnet, 

HTTP, …… 

Application Application 

TCP, UDP Transport 

Control Layer IP, ARP, ICMP Internet 

Network Interface 
Network  

Access Physical 

 
Table 1: Comparison of OSI, TCP/IP and OpenFlow models 

 
One fundamental feature of the IP protocol is that it only deals with packets, 
addresses, and directing messages to where they are intended (Stewart et al., 2001). 
This is the most significant unit of TCP/IP data transmission. TCP allows two devices 
to complete a connection and exchange streams of data. TCP assures that the data and 
packets will be delivered to the destination in the same order in which they were sent. 
 
Like the OSI model, functionalities of TCP/IP has been organised into four 
abstraction layers. (1): Network Access layer contains the network interface card 
which provides access to the physical devices. (2): Internet layer establishes network 
to network communications and therefore connects internetworking. (3): Transport 
layer handles the end-to-end (host-to-host) communication. (4): Application layer 
offers the users with the interface to communication and gives a way for applications 
to have access to networked services. 
 
TCP/IP is a set of protocols developed to allow cooperating computers to share 
resources across a network and also to ensure network’s robustness by recovering 
automatically from any failure of nodes on the network. Furthermore, it can allow 
large scaled networks to be contracted with minimal requirements of central 
management. 
 
B. Overview of OpenFlow-based SDN 
Software-defined networking (SDN) is a relatively advanced method for 
implementing communication networks (McKeown et al., 2008). SDN separates the 
decision maker, called the control plane, which decides where packets are sent, from 
the underlying infrastructure, called the data plane, which forwards packets to the 
decided destination. This is a migration of control can formerly and tightly bound in 
individual network devices enabling the underlying infrastructure to be abstracted for 
applications and network services, which can treat the network as a logical or virtual 
entity. A newly emerging standard for SDN is the OpenFlow standard, which includes 
a standardized protocol for communications between the control plane and the data 
plane (ONF White Paper, 2012). 
 



 

OpenFlow was initially introduced by Stanford University in 2008, as the first 
standardised communication interface defined between the control plane and the data 
plane of the SDN architecture (ONF, 2012). OpenFlow is an open standard that 
enables researchers to run experimental protocols in the networks without having to 
expose vendors’ internal implementations of their network devices. In classical 
switches and routers, the fast packet forwarding (data plane) and the high-level 
routing decision (control plane) happen in the same network element. In OpenFlow, it 
separates these two functions. The data plane portion still resides in the switches, 
whereas the routing decisions are moved to a different device called the controller, 
typically a standard server. Figure 1 shows the communication between controller and 
OpenFlow switch trough a Transport Layer Security (TLS) and its predecessor, 
Secure Sockets Layer (SSL) channel using the OpenFlow protocol (OpenFlow Switch 
Consortium, 2009). 
 

 
 

Figure 1: OpenFlow-Based SDN structure 
 
Related works 
This paper focuses on evaluating and analyzing networks performance and results, in 
this regards we use OMNeT++ network simulator. OMNeT++ has many advantages 
as a network simulator it’s been used widely in research academia fields because; it is 
able to simulate manufacturing, crowd management, airports and weather forecasting. 
OMNeT++ is scalable as its all simulated modules are implemented as C++ modules 
and they are linked together as a single process. Moreover, OMNeT++ can modify 
parameters such as link bandwidth and delay also it is possible to modify 
configuration of network size, mobility pattern or speed for performance results 
corrections (Varga & Hornig, 2008). When time is concerned in OMNeT++ the 
performance results need to be repeated for correction and accuracy. OMNeT++ 
supports OpenFlow network as an extension of INET framework including spanning 
tree protocol (STP). 
 
On the other hand, OMNeT++ has many limitations, one of those limitations relate to 
OpenFlow protocol is that, it is older than the latest version of OpenFlow of this 
writing is version 1.4 but this paper uses OpenFlow switch specification 1.2. In 
addition, OMNeT++ uses C++ modules with its simulation engine code as well as all 
devices and objects as user-level executable program exactly as ns-3 network 
simulator (NS-3, 2012). Meanwhile, NOX OpenFlow controller operations is a user-
level program but, OMNeT++ and NOX cannot be compiled and linked together to 



 

form a single executable program (Gude et al., 2008). For example, it is compulsory 
to create C++ module from scratch to build OpenFlow switch or controller, even ns-3 
needs to build new modules for the same reason. Therefore, the re-implemented 
modules may not be the same as the behavior of real device/object with real 
applications, because the re-implemented module is a much-simplified abstraction of 
the real devices/objects. As OMNeT++ is supporting many functions such as STP, 
where STP is not supported by ns-3 as well as no TCP connection between simulated 
hosts, so in real model when use a TCP connection the results are conceders the 
packet losses and congestion. 
 
There are many other test-beds for observing the network communication such as 
EstiNet which combines between network simulator and emulator (Wang et al., 
2013). However, emulator has limitations as it is only designed for real-time network 
functional testing.  Whereas the simulation is for arbitrary scenarios, the feature that 
emulator cannot do, so it does not scale very well. The simulated module of 
OMNeT++ does not connect to real OpenFlow controller as an external entity for 
measuring the effects of the OpenFlow protocol where Mininet and EstiNet can do. 
The network emulator separates namespaces such as Mininet, which lead to reducing 
the overhead of the system rather being as one simulation process. Mininet is 
emulated hosts as virtualization approach. Mininet emulated hosts can run real 
application and can exchange information (Lantz et al., 2010). For example, one of 
these hosts can be a controller because of the controller is as a real application, also 
can be an OpenFlow switch or just a normal host which can link to other emulated 
devices using Ethernet pair (linux kernel). 
 
Network emulator has unpredictable results and different experimental results on each 
run because of the emulated hosts run based on CPU speed, current system activities, 
system load, memory bandwidth, number of emulated hosts and multiplexing over the 
CPU. For example, Mininet schedule packets promptly by the operating system, then 
it is not guarantee that all software OpenFlow switches will forward packets at the 
same rate of emulated hosts. 
 
Mininet needs to run up a shell process to emulate each hosts and run up a user-space 
or kernel-space (OpenVswitch) to simulate each OpenFlow switch. Therefore Mininet 
is less scalable than EstiNet, ns-3 and OMNeT++. Mininet can only be used to study 
the behavior of the emulated hosts but cannot be used to study time of 
network/application performance. Mininet GUI can be used for observation purposes 
such as observing the packet playback of a simulation run and user needs to write 
Python code to set up and configure the simulation case. However, OMNeT++ has a 
GUI, which can be used for result observation and users need to write C++ codes to 
setup and configure the simulations. Overall, it is better to use OMNeT++ even 
though it takes more time and effort to create simulations, however once modules are 
created, it's much easier to create new ones. 
 
Performance comparison results 
This section provides a performance comparison of TCP/IP vs. OpenFlow modules in 
INET Framework 2.0 using OMNeT++ network simulation. The network simulator 
makes it possible to evaluate how a network performs under circumstances with 
different versions of the protocol stack, and enables analysis of the effects of different 
variables including channel speed and delay. 



 

 
A. Measurement methodology 
The OMNeT++ INET Framework 2.0 network simulator is a C++ discrete event 
simulator. An advantage of this simulator is that it simplifies the integration of new 
modules, and allows existing modules to be customized. The INET Framework is a 
network simulation package that contains models for wired and wireless networking 
protocols, including UDP, TCP, SCTP, IP, IPv6, and Ethernet. The INET Framework 
has recently implemented an extension to enable OpenFlow to be modeled. The 
OpenFlow extension is still in early development, and is currently based on Switch 
Specification Version 1.2 (Klein & Jarschel, 2013). 
 
The OMNeT++ network simulator is used here to simulate the operation of OpenFlow 
and TCP/IP while logging performance metrics including Data Transmission Rate 
(DTR) and the mean round-trip-time (RTT) for nodes in the simulated networks. We 
analyse the DTR and RTT for the nodes within TCP/IP and OpenFlow networks, 
using a similar network topology for each. Each network includes a number of hosts, 
two switches and a destination server (see Figure 2). The OpenFlow network also 
includes an additional device called the controller (standard server), which is directly 
connected via separate links to the OpenFlow switches. Hence the OpenFlow switches 
can perform Layer 2, 3, and 4 routing, as compared to the Layer 2 MAC learning 
table used by TCP/IP. The simulations are logged, and the logs are subsequently 
analysed to enable the performance of the OpenFlow and TCP/IP networks to be 
compared (Banjar et al., 2014a). 
 

 
 

Figure 2: Layout of simulated networks 
 
Performance is compared by varying the traffic and link delays by the same amounts 
in both the OpenFlow and the TCP/IP simulation channels. In this experiment, we 
measure the DTR and the mean values of measured RTT between the time-triggered 
nodes, both for the standard TCP/IP in INET, and OpenFlow. Sequential ping 
requests are generated, where each includes a sequence number, and replies are 
expected to arrive in the same order. After the simulation has run for 300 seconds, we 
measure the RTT for each ping and reply. This results in 48 measurements each for 
OpenFlow and TCP/IP, for each 300s simulation period. Each simulation was run ten 
times (OpenFlow and TCP/IP five times each) to reduce simulation artifacts. 
 
A large number of samples are recorded, and the means and standard deviations of 
DTR and RTT are computed. RTT is approximated using following equations 
(Sünnen D., 2011): 
 



 

 
 
 
 
 
 
The packet size is known to be 1,500 bytes long. The link speed limited to 100 Mbit/s 
in both the TCP/IP and the OpenFlow networks. Tr is the transmission time between 
the segments sent and the acknowledgement arrival, and α is a smoothing factor, 
which equals the value (7/8) ≈ 0.875. 
 
B. Result evaluation 
 

 
Figure 3: Mean RTT TCP vs. OpenFlow 

 
Comparing the OpenFlow simulation with TCP/IP suite allows us to draw conclusions 
on performance evaluation. It is assessed by varying the same amount of additional 
traffic and link delay in both OpenFlow and TCP/IP simulation channels. In this 
experiment, we measure the mean values of measured RTT between the time-
triggered nodes, both for the standard TCP and the OpenFlow. 
 
The results in Figure 3 shows the mean RTT from measured scalar values for TCP 
and OpenFlow among different domains, and it is obvious that the performance of 
TCP clients in every domain has lower RTT values than OpenFlow when using the 
ping application. Another outcome of Figure 3 is that OpenFlow performances are 
affected by the placement of the central controller. For example, the last two domains, 
Perth and Sydney, where the controller was placed closer to Sydney then the result for 
this domain is better than Perth with 0.0905 seconds lower rate of the measured mean 
RTT.   

 
Figure 4: Sydney domain RTT of TCP vs. OpenFlow 
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Figure 4 and 5 show traces of the round trip times for both TCP and OpenFlow that 
was used to test the various algorithms. Moreover, they show the comparison in more 
details to prove the outcome of Sydney and Perth. Where OpenFlow Sydney domain 
RTT starts at 0.22 seconds, and the OpenFlow Perth domain RTT starts at 0.57 
seconds. Thus, these differences are caused by the placement of the central controller. 
It is also evident that there are sudden spikes at the beginning and at the end of 
OpenFlow caused by connection establishment and termination. However, the 
performance of OpenFlow and TCP are slightly similar during 100 to 250 seconds of 
simulation run time. Because TCP takes less connection set-up time than OpenFlow, 
it overall performs with lower RTT values, which indicates how well the client can 
ping to others. This may confirm the assumption that TCP performs slightly better 
than OpenFlow with respect to mean round trip time (RTT), and performs faster with 
the same circuitry and not incurring major performance losses. 
 

 

 
 

Figure 5: Sydney domain RTT of TCP vs. OpenFlow 
 
Proposed DAIM model and its implementation 
DAIM is a sustainable information model, which collects, maintains, updates and 
synchronizes all the related information. Moreover, the decision making ability within 
each device locally, on the basis of collected information, allows it to autonomically 
adapt according to the ever changing circumstances (Banjar et al., 2014b). The DAIM 
model structure is proposed with the hope that it addresses the limitation of previous 
network protocols such as Simple Network Management Protocol (SNMP), Common 
Information Model (CIM) and Policy-Based Network Management. 
 
Proposed DAIM model will address the limitations of current approaches and future 
distributed network systems, creating an autonomic computing management strategy. 
The DAIM model approach will also satisfy the requirements of autonomic 
functionality for distributed network components like self-learning, self-adaptation 
and self-CHOP (configuration, healing, optimization and security). Each component 
can be adaptable according to any changed conditions of the dynamic environment 
without human intervention. 
 
We are proposing that by creating a DAIM model on the networks we could give 
effect to what we are calling a Reactive Interpreter Network. So it would be a truly 
distributed computing environment, where these DAIM agents reside in the network 
elements, which would be OpenFlow switches (Pupatwibul et al., 2013). The actual 
values in the OpenFlow tables, reside in the OpenFlow switches, and would then be 
the properties of DAIM agents. These agents would then have to do the work of 
modifying or adapting their values so as to implement the requirements of the 



 

network. So the whole DAIM model stretches across all these network elements and 
then could be thought of as reactive distributed interpreter that is interpreting the 
system requirements to enable the infrastructure to provide for the business needs. 
 

 
Figure 6: DAIM model integrated in OpenFlow switch 

 
The DAIM cloud has a multi-agent operating system such as SPADE (Smart Python 
multi-Agent Development Environment) that can create, change, and terminate the 
intelligent DAIM agents. These agents have the responsibility to maintain their own 
values, and they can adapt and modify their own value according to the collected 
information. DAIM agents can make their own local decisions based on the system 
requirements (see Figure 6). 
 
When the DAIM cloud receives an unmatched packet, it creates DAIM agents which 
can access and control network elements such as system requirement database, and 
other switches to determine the forwarding rules. The DAIM agents should be able to 
check this flow against system requirements and other policies to see whether it 
should be allowed, and if allowed the DAIM agent needs to compute a path for this 
flow, and install flow entries on every switch along the chosen path. Finally, the 
packet itself will be forwarded. The DAIM agents can provide a distributed 
environment where the network information is the property (values) of software 
agents residing in virtual machines that are distributed throughout the network 
elements. Therefore, the DAIM agents have the ingredients to implement autonomic 
behaviours. 
 
Conclusion 
We have introduced TCP/IP and OpenFlow networks including the background, 
behaviour and architecture. We gave a thorough overview of the related works 
regarding simulation and emulation tools, which present advantages for researchers to 
use OMNeT++ over other tools. We also presented Round-Trip-Time as network 
metric and topologies of our study, followed by evaluating the performance of TCP/IP 
protocol suite in contrast with OpenFlow protocol. It has been evident according to 
the measurement outcomes that TCP/IP performs more effective than OpenFlow with 
lower RTT values and can send streaming UDP packets at a higher rate (Mbps). 



 

Lastly, the proposed DAIM and its implementation have been introduced with the 
hope to resolve the scalability issues and develop autonomic behaviours in OpenFlow. 
 
As for future studies, we aim to implement the DAIM cloud and extend OpenFlow 
structure based on intelligent agents to exchange information and install forwarding 
flow tables, which can be used in other distributed computing environment. 
Therefore, it could be applied to many different environments such as large data 
centers and road traffic systems. 
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