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Abstract 
This paper reviews issues and challenges of uncertainty in time series data. The aim 
of uncertainty analysis is to determine the ways of how to deal with uncertain data in 
order to gain knowledge, fit low dimensional model, and do prediction. So as to build 
an efficient predictive tool, uncertainty in data could not be ruled out because it may 
bring important knowledge. Uncertainty information arises from different resources 
such as process uncertainty, model uncertainty or data uncertainty. In this paper, 
issues and challenges of these uncertainties in time series data will be discovered and 
how these issues could be solved by data mining techniques will be discussed. 
Frequent pattern mining algorithm through FP-growth, Apriori algorithm and H-mine 
are methods that could be used to investigate the existing of uncertainty data. 
Meanwhile, Euclidean distance, particle swarm optimization, Monte Carlo simulation, 
and regression are methods that could be compared as prediction methods. These 
methods have been implemented in many data types since early 1900s. Also, this 
paper shows results of the uncertainty detection test on time series data sets. The test 
aims to prove the existing of uncertainty in the data. This work will benefit in many 
application domains. 
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Introduction 
Uncertainty is a basic feature of automatic and semi-automatic data processes 
(Keijzer, Keulen, & Dekhtyar, 2007). There are many solutions have been proposed to 
reduce uncertainty because of risks in losing relevant information and misleading 
results (Radzuan, Othman, & Bakar, 2013). Uncertainty exists in time series data. 
Time series data is known as a stretch of values on a similar scale, indexed by a time 
that occurs naturally in many application domains such as environmental, economic, 
finance, and medicine. The aim of time series analysis is to formulate time series data 
to gain knowledge, to fit low dimensional models, and to make predictions. In reality, 
time series also deals with uncertainty. An uncertain time series data is a non-negative 
and precisely different ways in a number of fields (Cloke & Pappenberger, 2009; 
Lykoudis, Argiriou, & Dotsika, 2010). Particularly, uncertain data refers to data in 
which the ambiguity on whether it really takes place or not exists, or data for that the 
attribute values are not ascertained with 100 percent probability (Hooshsadat & Za, 
2012). The combination of uncertainties is significant (Cloke & Pappenberger, 2009; 
Jankovic, 2004; Lykoudis et al., 2010) and brings important knowledge. 
 
However, there are challenges to deal with when it involves domains such as 
manufacturing and weather forecast. Among the challenges include limited 
observational basis for seasonal and long term prediction, accurate forecasting of 
weather that may poses danger to aviation, prediction of product yielded during 
production process when expected situations happen, and many more (Williams et al., 
2008). Researchers in manufacturing have attempted to discover the appropriate 
techniques specifically for modelling and processing uncertain time series for 
temporal data (Dallachiesa, Nushi, Mirylenka, & Palpanas, 2012a; Dallachiesa, 2011). 
The involvement of this modelling and processing for uncertain time series is 
significant because they deal with query efficiency for accurate results (Zuo, Liu, 
Yue, Wang, & Wu, 2011). Meanwhile, in weather forecasting, new discovered 
knowledge from uncertain time series could be used in weather prediction or 
precipitation for the benefits of human being. 
 
Since 1900s, there have been many studies carried out in dealing with uncertain time 
series.  However, they used different terms. In 1905, researchers determined the 
relationships between normal and abnormal embryo development of a frog (Morgan, 
1905). The inconsistency in the segmentation process was regarded as uncertain time 
series in the development stages (Hume, 1911). Meanwhile, in 1985, researchers 
helped identifying wet spells of weather and assessed the unusualness of the recent 
episode of heavy precipitation in meteorology department even though the uncertain 
whether prolonged the dry spell, which stroke the lake levels down to much lower 
levels before the onset of the next severe wet spell (Karl & Young, 1985). These 
situations visualize that the uncertain time series is very helpful and useful when 
knowledge is extracted from the data sets. Consequently, it is a promising direction to 
explore for more knowledge extraction methods in uncertain time series mining. 
 
Further, uncertain time series mining is believed to be able to avoid risks and help in 
making better daily decisions. Uncertain time series mining also can improve the 
quality of demand, and identify temporal patterns that emerge and persist. This paper 
briefly describes the analysis of uncertain time series through issues and challenges. 
In response to that, this paper showcases the existence of uncertainty in selected 
uncertain time series datasets. In the remaining parts of this paper, some related works 



 

are discussed in Sec. 2. Then, the analysis results are exhibited in Sec. 3. Next, Sec. 4 
discusses the techniques and benefits. Finally, the conclusion is drawn in Sec.5. 
 
Related Work 
Uncertainty has been explicitly indicated as one of the future challenges in many 
fields (Halevy & Ordille, 2006). The uncertainty presents in all data processes and 
methods whether realize or not. The characterizing feature of uncertainty and other 
early works using uncertainty theories is after probabilities is used to select matching 
and non-matching objects (Hayne & Ram, 1990). Therefore, the uncertainty generated 
during data processes is lost (Dey, Sarkar, & Society, 2002; Florescu, Koller, & Levy, 
1997).  
 
There are relationships between original series (certain) and uncertain (Haitao & 
Xiaofu, 2009; Russa & Andrews, 2010). Generally, a clean time series data (certain 
time series data) is chosen for experiment. A certain time series data is a proper time 
series data which has been corrected or the inaccurate records have been removed 
from dataset. The certain time series is extracted to represent the original uncertain 
time series (Zuo et al., 2011). Uncertain time series can be treated as positional 
uncertain vectors (Abfalg, Kriegel, Kr, & Renz, 2009).  
 
Besides, uncertainty exists in a modelling process, in which it arises from a 
fundamental choice as seen in grid resolution and from the parameterization of 
unresolved processes at the grid scale (Angew et al., 2004).  Also, a high uncertainty 
brings big impact on prediction of regional climate change (Hawkins & Sutton, 2009).  
In fact, a lack of model diversity can cause a limited range of projections in climate 
change (Pennell & Reichler, 2011).  Meanwhile, the distinct sources of uncertainty in 
prediction include internal variability, model uncertainty or response uncertainty, and 
scenario uncertainty (Hargreaves, 2010; Hawkins & Sutton, 2009). 
 
The uncertain time series has been explored extensively in recent years. Uncertainty 
can be due to data aggregation, privacy-preserving transforms, and error-prone mining 
algorithms (Dallachiesa et al., 2012a; Dallachiesa, 2011).  As a result, they found that 
uncertainty information might appear on different reasons (Dallachiesa et al., 2012a). 
Predicting uncertain time series appears to be a serious problem, as the existing 
forecast of certain time series does not purely mirror the ability of predicting future 
decisions. Uncertain time series in prediction is believed can avoid risks and help in 
making better daily decisions. 
 
As an example, uncertain data is created by several applications in data forecasting, as 
can be seen in weather precipitation predicting for meteorology department, or in 
manufacturing demand prediction, which both actually can gain benefits in handling 
future outcome. Uncertain time series is important in making predictions. It influences 
the changeable climate that provides more useful information. Then, important 
knowledge can be tackled from this changeable gap that exists in uncertain time series 
data, in which the uncertainty can provide better results in terms of quality and 
efficiency (Dallachiesa et al., 2012a; Dallachiesa, 2011; Zuo et al., 2011).  
 
Hence, the determination of predicting uncertain time series should be noted as a 
serious action to improve the quality of yield. The limitation found from the analysis 
can be used as an opening of the experiment and aim for securing the limitation for 



 

enhancing the prediction outcome. Previous studies have discovered some possible 
properties of uncertainty in dataset (see Table 1). Also, clarification of uncertainty in 
dataset is important in identifying the type of data, so that they are not simply 
neglected. In normal practice, the organizer will neglect any data that they perceive as 
‘error’ without investigating uncertain data’s properties.  
 

Table 1: The Properties of Uncertainty in Dataset 
The properties 

• non-negative 
• loss value or null, truly different ways in a number of fields 
• data aggregation 
• privacy-preserving transforms 
• error-prone mining 
• positional uncertain vectors 
• exist in the modelling process where it arises from fundamental choice 
• and, from the parameterization of processes unsolved at grid scale. 

(Abfalg et al., 2009; Angew et al., 2004; Cloke & Pappenberger, 2009; Dallachiesa, 
Nushi, Mirylenka, & Palpanas, 2012b; Dallachiesa, 2011; Lykoudis et al., 2010) 
 
Therefore, there is an initiative to implement a number of algorithms consecutively to 
detect the uncertainty in dataset. In regards to that, Uncertain Associative Classifier 
(UAC) method (Hooshsadat & Za, 2012) could be used.  It is measured partly on its 
accuracy, in which the percentage of accuracy is calculated using rule-based classifier 
on datasets.  It is modelled based on a direct mining of discriminative patterns for 
classifying uncertain data at the level of uncertainty. In conjunction to this, a previous 
study found that the accuracy of data can be determined by uHARMONY, DTU, and 
uRule methods through UCI datasets (Hooshsadat & Za, 2012). Then again, 
uncertainty information arises from different resources such as process uncertainty, 
model uncertainty or data uncertainty. Frequent pattern mining algorithms through 
FP-growth, Apriori algorithm and H-mine are methods that could be used to 
investigate the existing of uncertainty in data. Table 2 shown the approaches include 
the advantages and disadvantages. 
 

Table 2: The Uncertain Data Approaches 
Apriori (UApriori) FP-growth (FP-tree) H-mine (UH-mine) 
Apriori identify the 
frequent items in the 
database and extending 
them to larger item sets 
appear sufficiently often in 
the dataset. 
- UApriori is an extended 
from Apriori Algorithm. 
- Efficient by employing 
pruning method. 
 

Efficient and scalable 
especially for dense 
dataset 
- Loss of compression 
properties. 
- Large number of false 
positive is generated. 
- The elimination of 
dataset further affects the 
efficiency. 

Efficient and scalable 
especially for uncertain 
dataset. 
- Can avoid generating a 
large number of candidate 
itemsets. 
-  Reduce memory 
requirements. 
- Best trade-off in terms of 
running time and memory 
usage. 

 
 
 



 

Experiment and Result 
The experiment in this study focuses on identifying uncertainty in selected datasets. 
The uncertain data is used to prove especially the accuracy of each prediction so that 
these methods can be studied for time series data. The data has gone through a 
discretization process (a process of organizing the dataset in minimizing redundancy 
and dependency, and makes it more informative to use).The discretization process 
involves scale-selective discretization (SSD) procedure as in (Vuorinen, Larmi, 
Schlatter, Fuchs, & Boersma, 2012). This SSD separates small and large scales of the 
flow using a high-pass filter. 
 
The Apriori is used as a generate-and-test approach by generating the dataset 
attributes and testing if they are frequent or not. Generation of dataset attributes are 
disconnected, where it is involve checking subset in each attributes and scanning 
multiple databases. Then, FP-Growth allows frequent attributes discovery without 
dataset attributes generation. There are two steps in this approach; first, it builds a 
compact data structure called FP-tree where it is built using two passes over the 
dataset. Second, it extracts frequent attributes directly from FP-tree where traversal 
through FP-tree. The H-mine tries to avoid generating a large number of dataset 
attributes and uses all involved attributes without eliminating or avoiding the null 
value. 
 
The three approaches are intersect with Uncertain Associative Classifier (UAC) 
method as implemented in (Hooshsadat & Za, 2012). The UAC algorithm can only be 
implemented after the trained dataset goes through a discretization process. The UAC 
algorithm is visualized in Figure 1. It involves three stages of UAC rule filtering of 
the three approaches. Further, the algorithm of each stage is detailed in Appendix A. 
Briefly, the UAC algorithm selects one classifying rule for each instance which has 
the highest relative precedence with respect to the test instance (Hooshsadat & Za, 
2012). 

 
Figure 1: Flow of approaches 



 

In this experiment, 43 uncertain time series datasets from UCI benchmark data were 
used. The results in Table 2 show the existence of uncertainty in the datasets. 
Particularly, to add the 10 percent uncertainty to an attribute, it is attached with a 0.9 
probability and the remaining 0.1 is distributed randomly among other values appear 
in the domain (Hooshsadat & Za, 2012). Eventually, the highest percentage of 
uncertainty represents the highest uncertainness in the data. 

Table 2 Result of uncertainty percentage detection for 43 dataset 
Dataset Uncertainty (%) 

Single Chest Mounted  68.2 
ADLs 24.9 
Amazon Access  70.4 
ASL 44.3 
ASL signs 39.3 
Bach Chorales  83.6 
Buzz 28.1 
CalIt2 32.0 
Character Trajectories  85.7 
DS Activities 41.9 
Daphnet 37.3 
Wrist worn 21.5 
Diabetes 12.4 
EEG  20.0 
EEG Eye State 25.5 
EMG Lower  88.1 
GSA Drift  0 
GSA turbulent gas mixtures 23.8 
GSA under flow modulation 48.0 
GSA open sampling settings 26.0 
Gesture Phase Segmentation 31.8 
Smartphones 34.0 
ICU 50.4 
Individual household 10.8 
Istanbul SE 39.8 
Japanese Vowels 11.1 
Localization Data  87.9 
Opportunity Activity 42.3 
Ozone 14.3 
PAMAP2 39.3 
PEMS-SF 23.6 
Pioneer-1 28.1 
Predict keywords 32.0 
Pseudo Periodic Synthetic  85.7 
Realdisp Activity 61.9 
Robot 77.3 
SML2010 81.5 
Spoken Arabic Digit 12.4 
Synthetic Control  80.0 
URL Reputation 23.0 
Walking Activity 34.3 
Vicon  75.0 



 

 
The experiment explained in the previous paragraph proves the existence of 
uncertainty in the time series dataset. The time series dataset was normalized before 
implemented on UAC algorithm. Normalization is important in order to minimize 
redundancy and isolate data. The mining process of time series data differs from 
normal dataset as the data properties itself are different. The result of time series 
dataset is same with previous study (Hooshsadat & Za, 2012) where there is existence 
of uncertainty in the dataset. 
 
Discussion 
The yield of prediction and knowledge from uncertain data brings important meaning 
for future prediction especially in weather domain. In a real situation, unpredictable 
events happen without being anticipated. In this study, the reviewed methods bring 
benefit to domain in predicting the uncertain time series data. The performed 
analytical and experimental comparisons of techniques described in the previous 
section should be further experimented in order to get accurate prediction. 
 
The FP-growth approach extracts frequent attributes from the FP-tree. The FP-tree 
can be built if only consider the transactions containing a particular attributes or else 
removing the attributes from all transactions. The H-mines approach help in 
minimizing items lost from that transactions. The compressed datasets have high 
tendency of losing attributes. All the uncertain properties in the datasets have been 
calculated and shown in percentage. From the percentage values, the uncertainty in 
datasets are detected. 
 
In this study, there are differences between uncertain data and uncertain time series 
data. While uncertain data refers to static data (Aggarwal, Li, Wang, & Wang, 2009), 
uncertain time series data refers to continuous data (Gagne, McGovern, & Xue, 2011). 
However, both collected data often inaccurate and are based on incomplete or 
inaccurate information. The detection test on uncertainty has shown that there are 
uncertainties in the datasets that would bring highly potential in yielding information 
for future prediction. The test helps the organizer to not neglect any data that they 
perceive as ‘error’. Therefore, the UAC method could be utilized for time series data 
in determining uncertainty in data. Then, the yield, which is uncertain time series 
data, of the process can be implemented on prediction methods. 
 
Conclusion 
This paper explains on evaluation methods used in uncertain time series. The analysis 
on previous works and the experiments outline the methods on certain data in order to 
extract knowledge for future work. This study discovers that there are methods that 
bring limitation in their prediction processes. The presence of uncertainty in dataset 
can be determined through a combination of FP-growth, Apriori algorithm, H-mine 
and UAC method. The data first gone through a discretization process involving SSD, 
in which it is a process of organizing the dataset in minimizing redundancy and 
dependency, and make it more informative to use. Through the experiment, on 
uncertainty existence in uncertain datasets have proved that uncertainties exist in time 
series data. Although the experiment brings benefits to domain, still future actions 
must be taken in obtaining accurate prediction in uncertain time series. 
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Appendix A 
 
The UAC algorithm (Hooshsadat & Za, 2012). 
 

Algorithm 1 UAC Rule Filtering: Stage 1 
 
1:  Q = ;;U = ;;A = ; 
2: for all i 2 Dataset do 
3: i:ucRule = firstCorrect(i) 
4: i:cApplic = _(i:ucRule; i) 
5:  i:uwRule = firstWrong(i) 
6:  i:wApplic = _(i:uwRule; i) 
7: U:add(ucRule) 
8: ucRule:covered[i:class] + + 
9:  if (ucRule _[i] uwRule) and ucRule _ uwRule 
then 
10:  Q:add(ucRule) 
11:  flag(ucRule) 
12: else 
13: A:add(< i:id; i:class; ucRule; uwRule>) 
14: end if 
15: end for 
 
Algorithm 2 UAC Rule Filtering: Stage 2 
 
1:  RepDAG = ; 
2:  for all < i:id; y; ucRule; uwRule>2 A do 
3:  if flagged(uwRule) then 
4:  ucRule:covered[y] �� 
5:  uwRule:covered[y] + + 
6:  else 
7:  wSet = allCoverRules(U; i:id; ucRule) 
8:  if !RepDAG:contains(ucRule) then 
9:  RepDAG:add(ucRule) 
10: end if 
11:  for all w 2 wSet do 
12:  w:replace:add(<ucRule; i:id; y >) 
13:  w:covered + + 
14:  ucRule:incom + + 
15:  if !w 2 RepDAG then 
16:  RepDAG:add(w) 
17:  end if 
18:  end for 
19:  Q = Q:add(wSet) 
20:  end if 
21:  end for 
22:  S   set of all nodes with no incoming edges 
23:  while S 6= ; do 
24:  r = S:next() fnext removes a rule from the setg 
25:  for all <ucRule; id; y >2 r:replace do 



 

26:  if (r:covered[r:class] > 0) then 
27:  if id is covered then 
28:  r:covered[y] �� 
29:  else 
30:  ucRule:covered[y] �� 
31:  Mark id as covered. 
32:  end if 
33:  end if 
34:  ucRule:incom�� 
35:  if ucRule:incom = 0 then 
36:  S:add(ucRule) 
37:  end if 
38:  end for 
39:  end while 
 
Algorithm 3 UAC Rule Filtering: Stage 3 
 
1:  C = ; 
2:  for all r 2 Q do 
3:  if r:covered[r:class] > 0 then 
4:  finalSet:add(r) 
5:  ruleErrors+ = computeError(r) 
6:  defClass = addDefaultClass() 
7:  defErrors = computeDefErr(defClass) 
8:  defAcc = addDefAcc(uncovered(D) �defErrors) 
9:  totalError = defErrors + ruleErrors 
10:  C:add(r; totalError; defClass; defAcc) 
11:  end if 
12:  end for 
13:  Break C from the rule with minimum error 
14:  C contains the _nal set of rules 
15:  default = defClass:get(C:size) 
16:  defApplic = defAcc:get(C:size) 

jTj 
 

 


