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Abstract 
Owing to geographic location of Taiwan being on subtropical monsoon zone, so 
typhoons and storms occur frequently. Typhoons and storms during summer and fall 
always cause several flooding, flood damages, and human lives loss in Taiwan. The 
major factors that cause flooding, landslide, and debris-flow in Taiwan are typhoons 
and storms of monsoon rain season. The function of hydraulic structure has its limit, 
it must cooperate with urban flood improvement action to mitigate flood damages. 
The urban flood improvement action must improve the locations of flood area, flood 
depth, flood duration, and calculate flood damages in the floodplain when heavy 
rainfall happens and effective mitigately the flood disaster loss. 
We present a two-dimensional unsteady flow model bases on the TVD finite 
difference method with structured grids in basin system. The Digital Terrain Model 
(DTM) is employed to treat the input and output data for the model. The final global 
of this project is to simulate Taipei city (Shilin area) and provide the most important 
information, including the inundation range and depth for Shilin. As an important 
aid to the flood improvement action review and evaluation for warming policy, and 
prepare step of decision. Then, we test the suitability of this model on Taipei city 
(Shilin area), and present the result and discuss. 
 
 
 
 

iafor  
The International Academic Forum 

www.iafor.org 
 



	
  

Introduction 
 
Flooding damaged river upstream reservoir numerical model of development, 
mainly to assess potential flooding floods in Taiwan. Simulation can be divided into 
a barrage of destruction, namely dam break flood; calculus of categories and 
flooding downstream. Dam-break flood simulation, thrust in a simulated dam 
collapse caused by the severity of the flood, flood extent and the degree of loss of 
life and property downstream areas could cause it to develop emergency 
contingency measures, to assess reservoir potential disaster to assist reservoir 
downstream catchment area development plans and the preparation of flood 
simulation. 
 
Dam-break flow phenomena for the free surface of the problem contained, while the 
free surface in the method of calculating the movement of fluid interface, usually 
divided into Eulerian description and Lagrangian description. Euler's description on 
behalf of all computing grid is fixed in space, a fixed-point observation of fluid 
particle motion. The pull is observed moving description of the fluid particles, due 
to the fluid motion of the free surface will therefore flow field grid computing 
movement must follow immediately, namely mobile grid. This section provides a 
brief introduction to the free surface of the processing method, comprising: a 
marked grid method (MAC), the volume of fluid method (VOF), level set method 
(LSM). Also listed in recent years, many scholars and research results of the free 
surface. 
 
Stay (1988) in order to deal with change, not the free surface boundary fixed by the 
coordinates conversion method, containing free surface boundary changes ilk field, 
into a fixed border area, and then be parsed to the finite element method. Solving 
the pressure field is concerned, the use of class Simple speed correction method. 
Finally, we discuss the circulation field containing the free surface of the fluid 
container and observe the two-dimensional turbulence freedom movement. Liao 
(1994) to the incompressible Navier-Stokes equations with the boundary 
coordinates adhesion method for solving free surface containing ilk field for much 
of the change in the free surface flow situations, such as fluctuations in the reservoir 
water problem, there's a good result. 
 
Huang (1998) studied the phenomenon of droplet collision and fusion, the idea of 
using multi-fluid system (multi-fluid) of the surface of the droplets regarded system 
density discotinuity, the use of surface capturing method to automatically calculate 



	
  

the position and shape of the droplet. The only effect of surface tension on the 
interface between different liquids, in theory, no thickness will cause computational 
difficulties, so this research to take continuous surface force model (continuum 
surface force, CSF), so that the free surface has a thickness, then the surface tension 
is expressed as of a continuous physical (body force) form, distributed in the 
volume percentage of the free surface. 
 
Mark Sussman (2000) allelic combination function method and fluid volume 
method, developed couples level set/volume of fluid (CLSVOF), and calculate the 
free surface two-phase flow problems. Development of this algorithm design is to 
calculate the surface tension and the free surface, can produce a more accurate ratio 
of the volume of fluid method or methods allelic function method. This article 
discuss buoyant bubbles, the bubbles merge the two issues found in the treated 
surface tension than the volume of fluid method is good, because the surface is 
relatively simple to calculate, but also more accurate than the mass conservation 
issues such as potential function method. Euler equation viewpoint taken to a fixed 
grid space observed fluid changes. The free surface of the particle tracking method 
were used, the volume of fluid method. Finally, we discuss the shock wave of finite 
amplitude, transmission and reflection of solitary waves. Hung (2002) CIP (cubic 
interpolated profile) method to simulate the free surface and the flow field, focuses 
on the CIP method for different thickness of the free surface of the grid scenarios 
capture and study there, without affecting the flow field of the viscous force . In the 
case of water droplets falling to explore the ability to simulate the surface, the 
viscous force found that the shape of the free surface has its influence exists. 
 
Guo (2002), the use of allelic function method for solving the two-dimensional free 
surface flows. And two-dimensional reservoir rippling problems dimensional 
dam-break flow field, the freedom to do validation or water and other cases. 
Numerical results for the initial discovery of the border merger, crushing the capture 
quite good results. Lu (2003) also allelic function method free surface of a 
two-dimensional flow problems. Also adding to verify Zalesak problem allelic 
function method, the weight of the correctness of the distance, and then within the 
convective flow field after field solution of the ladder reliability verification flow 
numerical model. Finally, after the free surface to simulate the ladder, jump water 
issues and other cases, for the consolidation of the free surface, crushing the capture 
also have good results. Chen (2004), the use of allelic function method for solving 
the three-dimensional free surface flows of. Will be extended to three-dimensional 
problems. Allelic function equation solving section, space, and time entries were 



	
  

used WENO France and third-order Runge-Kutta method to discrete. Finally, 
simulation examples include: dry bed dimensional dam-break issue, freedom or 
water and droplet collision. 
 
The outline of this paper is as follows: In Section 2, the differential equations 
governing the motion of two fluids will be presented along with the transport 
equations for the fluid viscosity and density. In Section 3, the truly two-dimensional 
dispersion-relation-preserving advection scheme will be presented to dispersively 
more accurate advect the front of interface. Section 4 is addressed to investigate the 
dam-break, bubble rising, and Rayleigh-Taylor instability problems. Finally, we will 
draw some conclusions in Section 5. 
 
Governing equations 
 
Of the two immiscible fluids under current investigation, one is known as a liquid 
and the other is a gas. Both of them are considered to be incompressible. The 
resulting equations of motion for the gas and liquid fluids in a gravitational vector 
field  can be represented by the incompressible Navier-Stokes equations given 
below: 

 (1) 

                           (2) 
 

where the physical properties  and  shown in equation (1) represent the fluid 
density and the fluid viscosity, respectively. Both of them are functions of the time 
and space, implying that  and = . The tensor  shown above 
denotes the rate of deformation, with the components denoted by . 
In addition to the stress tensor given by , where  is the identity matrix, 
the other source term capable of resulting in flow acceleration is the surface tension 

 concentrated solely on the two-fluid interface, which is denoted by the phase 
field function . 
In this study, the surface tension will be modified as the body force and is applied at 
the interface. In other words, the surface tension per unit interfacial area is given by 

 
                    (3) 

 
In the above,  is denoted as the surface tension coefficient,  is the curvature of 
the interface and the unit outward normal vector  along the interface is normally 



	
  

pointed to the surrounding liquid. One can express the normal and curvature of an 
interface in terms of  as  and . This clearly 
explains why the Navier-Stokes equations need to be formulated within the 
framework of level set method. In this study, the curvature term is approximated by 
the second-order accurate central scheme. 
 
The above equations cast in the dimensional form will be normalized for the sake of 
general application. Taking , , , , ,  as the referenced values for 
the respective velocity, length, time, pressure, density and viscosity, the normalized 
(or dimensionless) continuity equation remains unchanged.  
 

      (4) 

 
where  is the unit gravitational direction vector and the Reynolds number ( ) is 
given by = / . Another characteristic parameter  is known as the 
Weber number, which is defined as  and  is the Froude 
number. Both density and viscosity will be smoothly approximated by 

 and = +( ) , where  and  ( =1, 2) are the 
dimensionless densities and viscosities of the two investigated fluids, respectively. 
 
Numerical model 
 
In this paper, the advection term in the level set equation is discretized using the 
dispersion- relation-preserving (DRP) dual-compact scheme [22], and the advection 
term in the momentum equation is discretized using the multi-dimensional DRP 
upwinding scheme [23]. 
 
The underlying idea in the DRP method is as follows: to physically predict the first 
derivative term accurately, the dispersive nature embedded in it must be retained as 
much as possible. The reason for this is that the dispersion relation governs the 
relationship between the angular frequency and the wavenumber of the first-order 
dispersive term [24]. In other words, it is possible to predict the solution accurately 
provided that the dispersion relation is well preserved. To achieve this, we combine 
the Taylor series expansion analysis with the Fourier transform analysis to derive 
the discretized coefficients. For details of the derivations, the interested reader is 
invited to refer to [22] and [23]. 



	
  

 
I. Dispersion-relation-preserving scheme 
 
Assume that the first derivative term , in equation (4), and the second 
derivative term  are approximated within the following three-point 
compact framework 
 

  (5) 

  (6) 
 
For terms  and , they can be similarly expressed along the 

-direction. Note that the compact schemes for  and  are not 
independent of each other. They are rather strongly coupled through terms 

, , , , , , ,  and 
. For the sake of description, we consider the above equations only for the case 

involving the upwind (backward) case. 
 
Approximation of can normally accomplished by applying the central 
schemes because discretization error tends to be dissipative. The weighting 
coefficients shown in equation (6) are then determined solely according to the 
modified equation analysis to provide higher spatial accuracy. Derivation of the 
coefficients ~ , ,  and ~  is as follows. We start by applying the 
Taylor series expansions for ,  and  with respect to , 

 and . This is followed by elimination of the leading error terms 
derived in the modified equation. The coefficients then can be derived for Eq. (6) as 

=−9/8, =0, =9/8, =1/8, =−1/8, =3, =−6, =3. 
 
Dispersion-relation-preserving governs the relationship between angular frequency 
and the wavenumber of the first-order dispersive term [24]. The dispersive nature 
embedded in  can largely be retained if the first derivative term from 
equation (9) is modeled suitably. To preserve the dispersion relation, we applied the 
Fourier transform and its inverse for , as presented below: 



	
  

        (7) 

 
Note that notation  is equal to . By performing a Fourier transform on each 
term shown in equations (6) and (7), the expressions of the actual wave number  
for these two equations can be derived as 
 

 (8) 

 
In an approximate sense, the effective wavenumbers ,  have the same 
expressions as those shown on the right-hand sides of equation (8) [23]. Therefore, 
we can express  and  as follows: 
 

    (9) 

 
After solving equation (9),  and  can be derived as 
 

  

(10) 
 

To enhance the dispersive accuracy of , it is required that , where 
 denotes the real part of . This implies that  as defined below 

should have a very small, and positive value. Define 



	
  

    (11) 

where ,  and  is the weighting function which is selected to 
allow equation (11) to be analytically integrated. To make E the minimum, positive 
value, the following extreme condition is enforced 
 
The solution of the above equation, in conjunction with the other six algebraic 
equations obtained using modified equations analysis, allows for the seven 
introduced unknowns (provided below) to be uniquely determined as =0.875, 

=0.125, =−0.249, =0.00013, =−1.936, =1.997, =−0.061. It should be 
noted that the above upwinding scheme developed for  can be shown to have 
spatial accuracy up to the fifth order from the following modified equations = 

0.0007 ＋ 0.0002 ＋ 0.00005 ＋ 
. Please refer to [22] for details. 

 
For the sake of completeness, we also present the dispersion and dissipation 
behavior for the present dual-compact scheme. The fundamental analysis begins 
with the definition of coefficients  and  for the dispersion and dissipation 
errors, respectively: 
 

                 (12) 
 

In the above,  denotes the real part of  and  denotes the 
imaginary part of . In Figure 1(a) to (b), the predicted values of  and  are 
plotted against the modified wavenumber  for the proposed dual-compact 
upwind scheme. Figure 1(a) illustrates that the proposed scheme is capable of 
providing excellent dispersion, which is crucial to the simulation of the phase field 
equation. The  value derived from the current upwind dual-compact scheme, 
does not precisely match the exact solution, due to the addition of artificial viscosity 
to enhance stability. 
 
II. Semi-implicit Gear scheme and projection method 
 
In our present study, the two phase flow equations are discretized by the Gear 
scheme as follows: 



	
  

 

 (13) 

 
Note that we compute  using the second order backward difference: 
 

      (14) 
 

Equation (14) may be expressed as a Helmholtz equation in the form 
= . There is no need for non-linear iteration for the present 

semi-implicit scheme. The intermediate velocity  is generally not 
divergence-free. 

        (15) 

             (16) 
 

Considering the divergence in equation (15), we can derive the Poisson equation for 
pressure correction as follows: 

        (17) 

 
Solving equation (17), one can compute the corrected velocity 

− , and the pressure . 
 
III. Velocity-pressure coupling 
 
When solving the incompressible flow equation, special care must be taken for the 
velocity and pressure coupling. While a staggered grid has been demonstrated to be 
able to eliminate the odd-even decoupling problem, the resulting program 
complexity is still a key task. For our purposes, we use a semi-staggered grid to 
couple the velocity and pressure [27]. The velocity vectors are stored at the edge of 
the cell, whereas pressure and other scalar fields are stored at the center, as shown in 
Figure 2. The programming complexity is much lower for this grid system, 
compared to the staggered grid, and the coupling may be easily achieved if one 
employs a pressure interpolation from cell center to edge. 



	
  

Numerical results 
 
In this section, we present results for our solution. For the benchmark problems, we 
list the order of accuracy, the conservation of total mass, and the contours for the 
computed results. Finally, we compare our results with experimental and numerical 
results for three two-phase flow benchmark problems. 
 
I. Dam-break problem 
 
The first problem without considering surface tension simulates the sudden collapse 
of a rectangular column of water onto a planar surface. This classical problem, 
known as the dam break problem, has been frequently employed to validate the 
code for predicting free surface hydrodynamics. In addition to the hydraulic 
importance of this problem, both experimental [31] and numerical results [32] are 
available for making a direct comparison.  
 

 
Fig. 1. Schematic of the initial water column for the dam break problem considered 
 

 
 

Fig. 2. Comparison of the predicted surge front location and the water column 
height with the experimental data and the numerical results of Kelecy and Pletcher.  
 
(a) height of the wetted wall; (b) location of the water front. 
 
In the current calculation, the fluid properties are considered to be the same as those 
given in [32]. The initially prescribed height of the water column schematic in 
Figure 1 is =1. The results for the collapsed water will be predicted at =42792 
in the domain containing 301×76 and 401×101 nodal points. The predicted heights 



	
  

of the collapsed water column will be plotted against the dimensionless time defined 
in [32]. Good agreement with the experimental result given in [31] is clearly 
demonstrated in Figure 2 for the predicted surge front location and the water column 
height. The predicted time–evolving free surfaces in Figure 3 are compared also 
favorably with the finite element solution of Kelecy and Pletcher [32]. As Figure 4 
shows for the ratio of the temporal water against the initial water column, the 
conservative property built in the modified level set method is still retained quite 
well. 

 
Fig. 3. Comparison of the predicted free surfaces, obtained at 401×101 grids, with 
those of Kelecy and Pletcher for the two-dimensional broken dam problem. (a) 
t=0.6; (b) t=1.8; (c) t=2.4; (d) t=3.0. 
 
II. Bubble rising problem 
 
We then investigate the time-evolving interface problem where surface tension 
needs to be taken into account. The problem under investigation considers the 
evolution of a stationary bubble, that is driven by surface tension, in a container 
partially filled with the viscous fluid of height 3.5  and width 3.0 , where  is 
the initial diameter of the bubble. The main reason for modeling the gas bubble 
rising from rest in the incompressible fluid flow under buoyancy is due to a 
considerable amount of available experimental results in the literature [33,34]. 
 
Modelling of a rising bubble, schematic in Figure 5, needs to specify the ratios of 
physical properties for the gas and liquid. The fluid-gas density and viscosity ratios 
are specified respectively as =2.0 and =2.0. In addition, the problem 



	
  

under investigation is characterized by another two dimensionless parameters, 
namely, /  and , where  and  are denoted as 
the Reynolds and Weber numbers, respectively. The subscripts  and  
correspond to the fluid surrounding the bubble and the fluid inside the bubble, 
respectively. Initially, the bubble center is located stationarily at (1.5 ,1.5 ) in the 
flow, which is at rest everywhere. The whole domain will be considered rather than 
simply specifying the axially symmetric condition to avoid a possible development 
of Conda effect. As is usual, no-slip conditions are specified along the horizontal 
and vertical walls. 
 
As the former test problem, the bubble area is excellently preserved. We have also 
conducted the analysis with the physical density ratio of 1000, considered by 
Sussman et al. [19], to simulate the bubble rising problem. The predicted 
time-evolving free surfaces and bubble interfaces, obtained in 144×144 grids with 
＝100 and ＝200, are plotted in Figure 6. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Fig. 4(a). Numerical simulation of dam-break wave surface change over time 
(downstream water depth is 0). (a) t=0s; (b) t=1.0s; (c) t=2.0s; (d) t=3.0s; (e) t=4.0s; 
(f) t=7.0s. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 (f) 
 
Fig. 4(b). Numerical simulation of the downstream side of the dam-break wave 
impulse column. (a) t=0s; (b) t=1.5s; (c) t=2.0s; (d) t=7.s; (e) t=14.0s; (f) t=20.0s. 
 
III. Water droplet falling problem 
 
We also investigate a water droplet falling through the air and hitting the originally 
planar free surface. The dimensionless physical properties under current 
investigation are set to be the same as those given in Sussman et al. [36], namely, 

=1, =0.0141, =1, =0.00123. The drop is initially accelerated with a 
fictitious gravitational force  for a total dimensionless time of 2. 
Afterwards, three dimensionless parameters for characterizing the flow motion are 
chosen as =3518, =1633 and =220, where the characteristic length and 
velocity are chosen as m and 4 m/s, respectively. All the calculations will be 
carried out at = =0.03125 and =5.0"10-4 for the droplet with the 
dimensionless radius of 1. 



	
  

 
Fig. 5. Schematic of the initial condition for the bubble rising problem. 
 
For the sake of enlightening the effect of surface tension, the case with 
consideration of surface tension is investigated for studying the interaction between 
the water droplet and the originally stationary water bounded by the free surface. 
The predimensionless dicted time-evolving droplet interface and free surface in 
Figure 21, plotted at the dimensionless times =0.0, =2.4 and =3.5, are compared 
with those given in Sussman et al. [36]. As Figure 22 shows, the area-preserving 
feature remains also quite well for the case with consideration of surface tension. 
 
V. The actual terrain simulation 
 
Finally, the study of the actual terrain of the development model in this paper. In the 
northern part of Taiwan freshwater Triple River area as an example, this section 
describes the geographic information system (GIS) and the actual DTM terrain 
apply in this mode, the final simulation results illustrate how GIS intussusception 
were Application integration (reference Wu, 2005). 
 
Numerical terrain model DTM data set covering the whole island, its mesh size of 
40 square meters in Taiwan. Chelungpu fault along the Taipei area has a higher 
resolution of about 5 meters square grid of DTM data. Taiwan in 2006, Taiwan has 
completed DTM resolution of five meters square, since the information is not easy 
to build, general or special purposes higher resolution DTM data subject or purchase 
made by the applicant, DTM data system used in the present study through Feng 
Chia University (FCU) camp Infrastructure and Disaster Prevention Center achieved. 
The DTM data in accordance with the purpose or use of different methods of which 
have different sources of information, therefore, generally purchased in addition to 
the civil society, will also apply to land information system or purchase. Using 
ArcGIS software is based on the main shown in Figures 9-10. 
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Three simulated conditions assumed a sudden flood areas affected by the invasion, 
embankment or dike embankment overflow due to excessive upstream inflow, 
caused by a dike or notches to triple flooded areas. To penetrate the downstream 
boundary (outflow boundary), the basic depth of the river channel is set to 1.0 m, 
the number of simulated conditions set grid 1082, = =40m. Then the numerical 
topographic data (DTM) construct a triple-area numerical model will want to 
simulate the terrain, DTM accuracy of 40m"40m, is shown to simulate the actual 
terrain elevation schematic in Figure 11. Analog range is 4320"4320m2 
computational domain, including irregular terrain and meandering channels. The 
initial conditions for the simulation Manning n=0.095, CFL=0.01, simulation time 
from 0 seconds to 10,800 seconds. 
 
Due to lack of information Tamsui triple section, under this part to Typhoon aera in 
Taipei Bridge water line calendar for simulated conditions. Inflows to the 
two-dimensional variable Hager (1985) empirical formula proposed rewrite stream 
design flow line calendar to comply under the bridge in Taipei Typhoon aera 
calendar water line, and then to the peak flow into the design flow line as the 
simulation calendar start. Where the bridge is located in the middle of the triple 
Taipei area, but is tentatively scheduled for inflow conditions, future data collection 
more complete good, if correct flow calendar line, after substituting the calculated 
results can show the triple area flooded condition. 
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Fig. 6. Comparison of the predicted time-evolving free surfaces and bubble 
interfaces, obtained at 241"281 grids, with those of [35] for the case without 
considering surface tension. (a) t=0.5; (b) t=1.0; (c) t=1.5; (d) t=2.0 (e) t=2.5; (f) 
t=3.0; (g) t=3.5; (h) t=4.0. 
 

 



	
  

 
 
Fig. 7. Comparison of the predicted time-evolving free surfaces and bubble 
interfaces, obtained at 144×144 grids, with those of [19] for the case considering 
surface tension. (a) t=2.8; (b) t=3.2; (c) t=3.6; (d) t=4.0 (e) t=4.4; (f) t=4.8; (g) t=5.2; 
(h) t=5.6. 
 

 
 
Fig. 8. Comparison of the predicted interfaces with those of Sussman et al. [36] for 
the droplet problem investigated in 257×257 grids. (a) t=0.0; (b) t=2.4; (c) t=3.5. 
 



	
  

 
 

Fig. 9. Flooding flow simulation of the actual terrain conditions change (Reference 
Wu, 2005) 

 

 
 

Fig. 10. Flooding potential analysis indicate (Wu, 2005) 
 
Conclusion remarks 
 
The differential equation employed to model the evolving interface should 
accommodate the conservative interface property. This underlying transport 
equation should also have the ability to compress the level set function and can, 
therefore, sharpen the interface. For the stabilization reason, an artificial viscosity 
that is sufficient to suppress the oscillations in the vicinity of interface, at which a 
fairly high gradient solution may be present, is explicitly added to the formulation. 
The derived conservative level set method will be split into the conventional level 
set method for the advection of the level set function and the other inhomogeneous 
equation, with the compressive flux and source terms being nonlinear with respect 
to the level set function, for compressing the interface profile. The finite volume 
advection scheme implemented in the advection step of the conservative level set 



	
  

method should yield a predicted solution that is dispersively very accurate. Both of 
the proposed DRP advection scheme and compact pressure gradient scheme applied 
in non-staggered grids have been verified analytically. 
 

  

(a) (b) 

  
(c) (d) 

 
Fig. 11. Simulate the actual terrain level changes (a) t=1800s; (b) t=4800s; (c) 
t=7200s; (d) t=10800. 
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