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Abstract 
Big data is transforming the way governments provide security to, and justice for, 
their citizens.  It also has the potential to increase surveillance and government power.  
Geospecific information – from licence plate recognition and mobile phone data, 
biometric matches of DNA, facial recognition, financial transactions, and internet 
search history – is increasingly allowing government agencies to search and cross-
reference.  This heightened reliance on big data searches raises the question: what is 
the probative value of the information that results? 
A distinguishing feature of the scientific method is that it begins with the 
development of an hypothesis that is then tested against data that either support or 
refute the hypothesis.  That method is essentially followed in a conventional criminal 
investigation in which, after a suspect is first identified, evidence is gathered to then 
either build a case against, or rule out, that suspect. 
The analysis of big data, however, can, at times, be more akin to first trawling for data 
to only later generate an hypothesis.  In this paper, we investigate the conditions in 
which this may lead to problematic outcomes, such as more data leading to higher 
rates of false positives.  We then sketch a big data analysis legal/policy framework 
that can circumvent these problems. 
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Introduction 
 
With the advent of smartphones, people may now leave behind them a near complete 
digital trail of their daily lives – from everything we search for and read online, to 
continuous location information, to a record of their interactions through social media 
and texting apps.  Wearable technology is evolving in the direction of recording 
complete health and biometric information.  Contactless transit cards, and arrays of 
video cameras coupled with improvements in facial recognition and license plate 
reading algorithms, allow our movements to be more accurately tracked.  And 
cashless transactions allow every detail of purchases to be recorded.  
 
At the same time, advances in computing and statistical analysis are increasingly 
allowing for the contents of these vast databases to be analyzed and for inferences to 
be drawn from those data. 
 
In the United States, dragnets – where large numbers of people are indiscriminately 
questioned or detained – are a violation of civil liberties and considered 
unconstitutional.  Despite this, recent years have seen growth in the area of digital 
dragnets that provide law enforcement with access to ever-larger DNA databases, 
financial and communications records, and the results of widespread electronic 
surveillance.  These dragnets are often justified by threats to security or rationalized 
as resulting in only metadata.  Regardless of how these searches are framed, this paper 
will show that they collect that may lead to erroneous conclusions. 
 
An important, but often overlooked, aspect of the scientific method is that a 
hypothesis is formulated before data to test that hypothesis are drawn.  Without 
establishing a hypothesis first, it is easy to fall into a trap of data dredging, in which 
inadvertent patterns are uncovered and misleading conclusions are drawn.   
 
For that reason, modern forensic investigations ideally follow a path akin to the 
scientific method – a suspect is first identified (i.e., a hypothesis is first formed), then 
evidence to test that hypothesis is gathered. 
 
In this paper, we will discuss the implications of deviating from that path.  To 
introduce one type of problem that arises when hypotheses are not established first, 
the next section will outline a well-known result from probability theory known as the 
birthday paradox (Bloom, 1973).  We will then illustrate something akin to the 
birthday paradox with real examples from DNA database matches.  Finally, we will 
examine the situation with respect to Big Data searches and, and we will discuss 
potential solutions to the problems that arise. 
 
The Birthday Paradox 
 
Suppose that, in a group of N people, each of the 365 possible birthdays is equally 
probable; we will ignore leap years. 
 
If N = 2, the probability that they share a birthday is 1/365 = 0.0027 – that is, we 
could assign the first person any birthday, and the second person would have a 1/365 
chance of having the same birthday.  
 



 

A question that naturally arises is: how large does N need to be for it to be likely that 
(at least) two of the people share people share a birthday?  As it turns out, N = 23 is 
sufficient to give us a 50.7% probability that (at least) two of the people will share the 
same birthday.  Many would find N = 23 to be a surprisingly small number.   
 
When N = 60, there are fewer people than required to cover 1/6th of the birthdays.  
Yet, the probability that two of those people share the same birthday rises to 99.4%.  
 
And when N = 200, the probability that at least two people share a birthday is an 
astounding 99.9999999999999999999999999998% – roughly equivalent to the 
probability of winning a multi-million-dollar jackpot in a lottery four times in a row – 
despite the fact there are only enough people to cover slightly over half (54%) of the 
birthdays. 
 
The fact that these probabilities are so unimaginably high is referred to as the birthday 
problem or birthday paradox (Bloom 1973), not because it is a real paradox – after all, 
the reasons are well understood – but because it is an apparent paradox in the sense 
that it defies human intuition. 
 
The birthday problem is relevant to our understanding of the effect that hypothesis 
formulation has on the validity of forensic discovery.  To see this, consider the 
following cases: 
 
Case I: Suppose a suspect has been first identified.  Only thereafter is it determined 
whether that suspect meets a key fact in the investigation.  For example, his/her 
footprint must be of a certain size or he/she is excluded as a suspect.  This is akin to 
asking the question: what is the probability that the birthday of one specific individual 
matches the birthday of another specific individual in the group?  The answer to that 
question is independent of the number of individuals in the group; the hypothesis 
would be validated by random chance alone with a probability of only 1/365 or 0.27%.  
 
Case II: Suppose a suspect has been identified first, but he/she only needs to match 
some fact in the investigation. This is akin to asking: what is the probability that a 
specific individual in a group has a birthday that matches that of some individual in 
the group. The probability of this match happening by random chance alone grows as 
the number of people in the group does. For example, when N = 2 it is 0.27%, but 
when N = 200 it grows to 42%.  
 
Case III: Suppose that no suspect has been identified and that there no specific 
exclusionary criteria. Instead, the data are dredged through to find a hypothesis. In the 
case of birthdays, if N=200, as above a match will be found by random chance alone 
with a probability of 99.9999999999999999999999999998%, and so the fact that the 
birthdays of two individuals in the set match would have no evidentiary value. 
 
In the next section we illustrate how something akin to the birthday problem arises in 
the context of DNA database matches.  
 
 
 
 



 

DNA Database Matches 
 
In recent years there has been a lot of controversy about how to calculate the 
probability of a random DNA sample matching the profile of one found in a DNA 
database. While everyone has unique DNA, DNA databases typically only store a 
profile from this DNA consisting of measurements at a fixed set of locations (or loci) 
on the chromosome. Typically, 9 to 13 independent loci are selected for the database, 
with two unrelated samples matching at a particular loci with a probability of about 
7.5%. Thus the odds two random unrelated profiles match at a fixed set of 9 loci is 
about 1 in 13 billion and at 13 loci is about 1 in 420 trillion.  
 
One controversy that has arisen is from the statistical results from The Arizona DNA 
Offender Database (Kaye, 2009). At the time the database had 65,493 profiles, those 
profiles were analyzed and 122 pairs were found to match at 9 loci, 20 at 10 loci, and 
1 pair at each 11 and 12 loci. Many people found these results astounding as the 
database was relatively small, and, as noted above, the probability of two random 
samples matching at 9 loci is about 1 in 13 billion, and at 12 loci about 1 in 32 trillion.  
 
There are, however, several reasons why we would expect to see a large number of 
matches. The first is due to the birthday paradox, as described above.  The second 
reason is that, in the case of 9 loci for example, the loci for which the matches occur 
could be different for different pairs of matches. From a set of 13 loci there are 715 
different ways to choose 9 of them, so allowing partial matches increases the odds of 
a match by an additional factor of 715. 
 
While these considerations do not fully explain the high number of matches, they do 
come close – for example, in the case of 9 loci, the expected number of matches 
would be 68, not 122 as were found.  But, given the scale of the numbers being dealt 
with, that is fairly close, particularly given the crudeness of the genetic model in 
which it is assumed that all individuals are unrelated, and all loci are independent with 
equal probabilities of random matches. A more sophisticated analysis has been done 
by Mueller (2008). 
 
One issue that arises immediately from DNA matches is that the science is relatively 
sophisticated and the odds of a random match can seem so overwhelmingly long that 
it seems possible to identify and convict a suspect by means of a DNA match only. 
But this is problematic if the match originated from a database search alone. A few 
cases are instructive. 
 
In what was the first widely reported false match (Fowler, 2003) from a DNA 
database, a severely disabled man in the United Kingdom who was arrested for a 
burglary that occurred some 200 miles away and that involved the burglar climbing 
through a window.  In that case, the only evidence was a match from a database 
search with a probability of 1 in 37 million, which corresponds to 6 loci.  The near 
impossibility of the man committing the crime did not clear him. 
 
With the population of the United Kingdom being 64 million, on average we would 
expect any 6-loci DNA profile to be shared by two people.  But, by conducting a 
DNA database search, we essentially trawled through millions of hypotheses to fit the 
evidence, violating the first tenant of the scientific method – that we must first have a 



 

hypothesis. This illustrates what is known as the prosecutor’s fallacy (Thompson & 
Shumann, 1987), in which investigations and prosecutions revolve around a 
probability of match. The correct interpretation is that if the suspect is innocent, there 
is a 1 in 37 million chance that there is a match. However, with the prosecutor’s 
fallacy, the clauses are reversed and the logically incorrect interpretation is adopted – 
if the DNA matches, there is a 1 in 37 million chance that the suspect is innocent.  
 
It is not just investigators and prosecutors who incorrectly weigh DNA evidence.  A 
30-year old cold-case (Murphy, 2015) facilitated the analysis of partial matches in the 
Arizona DNA database.  The defendant in that case was identified and convicted 
largely due to the partial match of the badly degraded DNA sample to a profile found 
in a California database.  The judge allowed only the prosecution’s statistic that the 
chance that an individual picked at random would match the crime-scene DNA is 1 in 
1.1 million. Jurors were not informed that the match was a result of a database trawl, 
whereby 9-loci partial matches are not uncommon, nor were they informed that about 
40 people in California would be expected to have a profile that matches the crime-
scene sample. The fact that a partial match was used is not that uncommon, as crime 
scene evidence can be degraded and mixtures of DNA samples can result.  
Furthermore, different databases often use different loci for profiles, and searches can 
be done using the profiles of close relatives. 
 
A further problem with assigning astronomical probabilities to a single piece of 
evidence, such as a DNA database match, is that those probabilities would be dwarfed 
by real-life considerations, such as laboratory errors and contamination. For example, 
a man in Australia was convicted of raping a woman found unconscious at a nightclub 
based solely on a random match in the Australian DNA database (Roberts & Hunter, 
2012), despite other evidence suggesting that the individual could not be a suspect.  
Only through post-conviction serendipity was it discovered that the original rape-kit 
was likely contaminated at the laboratory, leaving no clear evidence that a crime even 
took place. 
 
Even when evidence is found at the crime-scene and it is correctly attributed to an 
individual, the relevance of the sample to the crime must be established.  Typically, 
DNA establishes, at most, the presence of or contact with an individual, not that they 
committed a crime.  In another case, a man in the United Kingdom (Barnes, 2012) 
was jailed for eight months when a partial match was found between his DNA profile 
in a database and a crime-scene sample from a murder scene.  It has been suggested 
that because the suspect was a taxi driver, he likely came into contact with the victim 
individual and some of his shed skin cells clung to that person.  
 
While there are potential pitfalls in interpreting DNA evidence, especially when it 
comes from random matches found by trawling through databases, it is important to 
note that DNA evidence is still some of the most reliable types of evidence there is, 
and that it has likely lead to the exoneration of more people far more often than it has 
resulted in false convictions.  By comparison, while identification by eyewitnesses 
carries a lot of weight in courts, studies have shown how utterly unreliable eyewitness 
testimony can be (National Research Council Report, 2014). We introduced the issues 
with the Arizona DNA Offender Database to demonstrate how the birthday problem 
arises in criminal investigations. 
 



 

In the next section we will discuss how these problems might be amplified as the 
number and type of databases used in forensic investigations increases.  
 
Big Data Searches 
 
In recent years, aided by technological advances and often rationalized as necessary to 
fight terrorism, mass surveillance has been increasing.  For example, in the United 
States, metadata for hundreds of billions of telephone calls has been collected (Cauley, 
2006); the exterior of all letter mail is photographed (Miga, 2013); databases 
containing information on financial transactions, e-mails, and internet surfing habits 
are maintained; and social media are monitored (Kawamoto, 2006).  The FBI has a 
face-recognition system with a database of over 400 million photos (Kelley, 2016). 
Combined with the ever increasing array of CCTV cameras, it might be possible to 
recognize individuals in any public location. For example, the United Kingdom has up 
to 6 million CCTV cameras (Barrett, 2013), about one for every 11 individuals. 
Furthermore, location information could also be obtained from license plate 
recognition or from databases of transit card usage.  
 
In addition to government databases, private companies such as Google and Facebook 
have access to vast amounts of information about individuals, except where one 
makes exerts considerable effort to maintain their privacy. This is especially true due 
to the near ubiquitous use of smartphones. They potentially have access to the 
contents of every digital communication one partakes in, and to one’s location 
history; they can map one’s photographs, social connections, and browsing and search 
histories; and they can potentially track health and biometric information through a 
phone’s sensors.  This information is also available to governments seeking to 
increase surveillance.  
 
The average individual leaves a vast digital trail throughout the day, from which it 
may be possible to surmise when he/she woke up and how long they slept, their 
location throughout the day, including where they work, where they shop, and what 
they bought, read, or wrote.  By combining the available information with information 
from biometric sensors in smartphones or wearable devices, it may be possible to 
develop algorithms that give an idea of what an individual thought and felt throughout 
the day or to predict behavior. 
 
While all of this information can be a boon for law enforcement in their quest to solve 
crimes, as the number and size of databases grow it also has the potential to lead to an 
increase in the number of falsely accused individuals.  To see this, consider a DNA 
database in which an individual profile will typically contain information regarding 
13 loci. This would be equivalent to an individual having a record in 13 different 
databases, each containing the information of a single loci. Thus searching through 
multiple databases of digital information would also be subject to the Birthday 
Paradox as we have seen with DNA.  Moreover, when an individual matches 
information in only some databases but not others, this further magnifies the problem 
of false identifications from partial DNA matches have been shown to have with the 
Arizona DNA database.  
 
While there are many similarities with searching through digital information 
databases and DNA databases, there are causes for greater concern.  DNA analysis 



 

occurs in a laboratory setting, and while the measurements have errors associated with 
them, they can be estimated.  Laboratory errors do occur, of course, but it is still a 
scientific setting where one would believe every attempt would be made to estimate 
and minimize these errors. On the other hand, analysis of databases of other digital 
records might involve information that was not originally intended for forensic 
examination, such as facial recognition on grainy photos or the inaccuracies of finding 
the location of a mobile phone user.  These errors may be poorly understood and 
might contribute significantly to birthday paradox collisions.  Furthermore, DNA 
analysis involves trying to match a set number of loci, while a trawl through digital 
data may involve an unknown number of databases and is problematic because the 
probability of a match would be incalculable. We have seen that partial matches of 
only some loci significantly increase the chance of misidentification with DNA 
databases, but in that case we know which loci cannot be matched and probabilities 
could be adjusted accordingly. It would be even more problematic if the databases 
investigated were not known or revealed. For example, suppose while in an 
investigation, all Google searches for a particular explosive were flagged. If a suspect 
had searched for that particular compound, that would certainly be used to build the 
case against him or her. On the other hand, if the suspect was not one of the 
individuals who had made that particular search, that fact might not be factored into 
the calculation of their probable guilt and it would almost certainly be inadmissible in 
court.  
 
The concern with searching through a large number of databases for suspects that 
could fit the evidence of a crime is, of course, that people may be falsely accused.  
But with such an overwhelming amount of circumstantial evidence pointing to them, 
it could be difficult to exonerate them. For example, perhaps a murder has been 
committed, and by pure chance alone an individual is found whose license plate was 
caught driving nearby at a similar time, traces of whose DNA are found on the murder 
victim (perhaps because they ate at the same restaurant), and perhaps the day before 
they bought the same brand of duct tape used in the crime. As technology and pattern 
recognition algorithms get better, it is likely that even more casual links in vast arrays 
of data will be found. 
 
Discussion/Conclusion 
 
Databases are important tools for fighting crime and protecting national security. 
Indeed, as criminals become more sophisticated in their use of technology, there is 
arguably a need for law enforcement to do the same.  A significant problem arises, 
however, because trawling through a database without a suspect in mind – essentially 
in violation of the scientific method – may result in erroneous conclusions. 
 
A primary goal, then, should be to put these searches on a more scientific footing.  
Perhaps the most obvious way to achieve this would be to use the database for 
identifying a suspect (i.e., formulating a hypothesis), and not for building a case 
against him or her.  Only further evidence gathered from other sources would be used 
for the purposes of prosecuting.  A second possible approach would involve (perhaps 
randomly) separating a list of all available databases into two parts.  From one part, a 
suspect could be identified, while, from the second part, searches could be conducted 
to build a case against that suspect.  Of course, many would object to either approach, 
for they would be seen as leaving evidence unused. 



 

 
Whether or not a hypothesis is found first, it is important to understand the statistical 
characteristics of many of the key databases used in order to understand their scope 
and potential inaccuracies.  This would be important for assigning a probability of a 
match for use in the legal system. 
 
Of course, even in the case of DNA, law enforcement agencies have fought access by 
researchers to study random match probabilities (Kaye, 2009).  Yet, potential 
violations of privacy could be circumvented by removing any to individuals.  The data 
could be scrambled or encrypted in some way without compromising researchers’ 
abilities to analyze the key characteristics of the data.  In order to make investigations 
more scientific, it is important to carefully document all database searches included in 
the hunt for a suspect, even the ones that lead to negative results.  For these purposes, 
the development of a standardized set of databases and search criteria would be 
appropriate. 
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