
Elimination Mechanism of Glue Variables for Solving SAT Problems in Linguistics 
 
 

Ziwei Zhang, Beijing University of Posts and Telecommunications, China 
Yang Zhang, Beijing University of Posts and Telecommunications, China 

 
 

The Asian Conference on Language 2021 
Official Conference Proceedings 

 
 

Abstract 
We propose GVE(Glue Variables Elimination), an algorithm that organically combines neural 
networks with a deterministic solver to solve SAT(Boolean satisfiability problem) in the field 
of linguistics. It gives full play to their respective advantages by following steps: (a) applying 
a graph learning algorithm to learn the structure of the CNF formula; (b) finding the glue 
variables of the problem; (c) determining their values; (d) simplifying the original formula; (e) 
using a deterministic solver to solve the simplified problem. We use SATCOMP 2003-2019 
benchmarks as the test data sets, and compare our model with the SAT solver CADICAL that 
has performed well in SATCOMP 2019 as well as the neural network model PDP proposed in 
recent years. GVE model shows good performance. As the complexity of the problem 
increases, the solution time can be about 20%-95% quicker than the deterministic solver, 
while at the same time around 72% more accurate than PDP model.  
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Introduction 
 
In industrial production, many questions can be converted into satisfiability questions 
(Constraint Satisfaction Problems (CSP)(Kumar, 2015)), especially Boolean satisfaction 
problem(SAT). Boolean Satisfiability, in particular, is the most fundamental NP-complete 
(Garey & Johnson, 1979) problem in computer science with a wide range of applications in 
various areas(Biere, Heule & van Maaren, 2009; Knuth, 1997). There is no deterministic 
Turing algorithm to solve the SAT problem in polynomial complexity(Van Leeuwen, 1991). 
However, SAT problems are inevitable in practical application, for example, in the fields of 
engineering technology, complexity theory(Karp, 1972; Aho & Hopcroft, 1974), military, 
artificial intelligence(Vizel, Weissenbacher & Malik, 2015), concurrency control, transpor- 
tation, intelligent traffic control and so on. From the point of view of problem solving, 
complete algorithm, represented by Davis-Putnam proposes based on the recollection 
search(Nieuwenhuis, Oliveras & Tinelli, 2005; Zhang & Malik, 2002), can solve both 
satisfiability problems and unsatisfiable problems, though it can take a long time.  
 
Machine Learning has been used for different aspects of CSP and SAT solving from branch 
prediction(Liang, Ganesh, Poupart & Czarnecki, 2016) algorithm to hyper-parameter 
selection(Xu, Hutter, Hoos & Leyton-Brown, 2008). These algorithms all encode the input 
SAT instances to different degrees while interconnectedness of the CNF formula exists in its 
original structure. There is a serious risk that those feature extraction techniques will lose the 
hidden information of the formula during procedure of data processing. For instance, 
frameworks such as Graph Neural Network(Li, Tarlow, Brockschmidt & Zemel, 2015), 
PossibleWorldNets(Evans, Saxton, Amos, Kohli & Grefenstette, 2018), NeuroSAT 
framework(Selsam et al., 2018), the Circuit-SAT framework(Amizadeh, Matusevych & 
Weimer, 2018) and Recurrent Relational Networks for Sudoku(Palm, Paquet & Winther, 2018) 
et al. have been quite successful in capturing the inherent structure of the SAT instances by 
embedding them into traditional vector spaces that are suitable for Machine Learning models. 
However, they don’t have a persuasive explanation why their networks effective and how 
they work. Most importantly, their accuracy has a sharp decline as the number of variables or 
complexity of the SAT problems increases. Furthermore, the previous researches of solving 
SAT problems that use pure neural network (e.g. PDP(Amizadeh, Matusevych & Weimer, 
2019)), show a decline trend of performance with the increment of problem scale, most of 
which are limited by the structures of CNF formulas. The uncertainty of their results also 
make them have little practical value.  
 
Our contributions are as follows: 
(a) The method of graph learning and representation proposed by Hamilton, Ying and 
Leskovec(2017) is used for the sake of learning internal features of SAT problems. Different 
from the previous work, which only has one kind of node in the graph, our graph has two 
kinds of nodes. We see the CNF formula as a bipartite graph with literals and clauses as the 
two type of nodes, and train a set of aggregator functions based on Random Walk(Spitzer, 
2013) and Graph Convolution Network(Geng et al., 2019) that learn to aggregate feature 
information from a node’s local neighborhood that contains both variable nodes and clause 
nodes. In this way, we are able to adapt to the different CNF structures and train a general 
solver to solve all kinds of questions which can significantly improve efficiency. 
 
(b) Considering that the performance of neural model is limited by the complexity of the 
problem, we do not attempt to solve the whole question, but rather focus on finding out glue 
variables and their values -- those likely to occur in glue clauses(Audemard & Simon, 2009), 



a type of conflict clauses known to be extremely important to the reasoning of modern 
CDCL(Heule, Kullmann, Wieringa & Biere, 2011) SAT solvers as a reinforcement task and 
then solve them through a Survey Propagation Algorithm idea based neural network. Finally 
we use the complete solver CADICAL (QUEUE, 2019) to solve the simplified formula. 
Furthermore, our framework is designed in unsupervised manner that allows GVE to be 
trained without training data markup.  
 
(c) Unlike previous works only give a answer either “satisfiable” or “unsatisfiable”, for the 
UNSAT CNF, we not only show the result, but also the UnsatCore -- the combination of 
clauses whose subsets are still unsatisfiable, is derived as a proof of the answer. 
 
We evaluate our algorithm on thousand near CNF instances that chosen from SATCOMP 
2013-2019 benchmarks. Our experimental results show the superiority of the GVE 
framework compared to both neural and classical solvers. 
 
Preliminaries 
 
A propositional logic formula, also called Boolean expression, is built from variables, 
operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬), 
and parentheses. The SAT problem is to check whether a given formula is satisfiable or not. If 
a variable assignment exists which can make every clause TRUE, the formula is called 
satisfiable. On the other hand, if no such assignment exists, the function expressed by the 
formula is FALSE for all possible variable assignments and the SAT problem is unsatisfiable. 
A disjunctive expression of a finite number of variables is called a clause. A formula is in 
conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause). 
 
1.1. Solving Algorithms Bases 
 
Glue levels and glue variables Glue variable is an important concept in CDCL algorithm 
(Conflict-Driven Clause Learning) proposed by Heule et al.(2011). Here we introduce the 
concept of unit propagation(Nieuwenhuis et al., 2005): given a clause , if 
all literals but  are set to 0, then  is equivalent to the unit clause ( ), and the value of 

 is forced to 1. Glue level counts the number of decision levels involved in the clause. A 
clause with low glue level requires fewer decisions to become unit. Variables in clauses with 
glue level≤2 are called glue variables. Finding glue variables had greatly improved the 
performance of existing technologies and has now become a standard practice. 
 
SP Algorithm 
 
SP (Survey Propagation) (Braunstein, Mézard & Zecchina, 2005; Mezard & Montanari, 2009) 
algorithm is a typical incomplete algorithm of which principle is derived from the theory of 
the spin glass system (Sherrington & Kirkpatrick, 1975) in statistical physics. SP applies a 
message passing technology to pass the probability of the variable to make the clause it 
located unsatisfiable, and then uses the investigation iteration function to repeatedly calculate 
the message passed in the factor graph. If this process converges, a set of marginal probability 
distributions of the values of all variables will be finally obtained. Through the probability 
distribution, the possible value of each variable can be known. Then the SP algorithm uses 
the Walksat(Hoos, 2002) algorithm to fix one or some variables to simplify the original 
problem. Walksat is an extension of Random Walk. Their fundamental idea is to randomly 
generate an initial assignment, and then select a variable to flip under certain conditions until 



the maximum number of flips is reached or a solution is found. If the problem is satisfiable, a 
set of solutions can be finally obtained after repeating the above process. 
 
1.2. Graph Representation 
 
Figure 1 shows the graph representation model of clauses and variables. Circles represent 
variable nodes, and squares represent clause nodes. There are two types of edges, which 
represent the sign of the variable in the clause. This graph model can establish the adjacency 
matrix between variables and clauses, and can intuitively reflect which clauses a certain 
variable is related to. For example, clause  has three variables , , , so the origin 
formula can be represent as . In the same way, the formula  in the 
figure can be restored to the original mathematical expression: 
 

 
 

 
Figure 1: Graph Representation Structure of 

Clauses and Variables 

 
Figure 2: A CNF Conversion Example 

 
 
In order to ignore the signs in the original formula during training, we split the variables into 
positive and negative terms, and regard the negative form of each variable as a new variable. 
Figure 2 shows a CNF conversion example intuitively. As for training, for a CNF formula 
with  clauses and  variables, it will eventually be expressed as an  0-1 matrix 

 which contains all positive variables and  matrix  
which contains their negations.  
 
Instead of training a distinct embedding vector for each node as traditional graph 
representation methods do, we train a set of aggregator functions that learn to aggregate 
feature information from a node’s local neighborhood. Each aggregator function aggregates 
information from a different number of hops, or search depth, away from a given node.  
 
2. Network Architecture 
 
Since it is difficult to solve the difficult SAT problems by using pure neural networks, we 
introduce the idea of model compound -- the combination of neural networks and a 
deterministic solver. The key to solve the SAT problem is to find out the key variables in 
CNF so as to simplify the original formula. When interacting with the deterministic solver, 
the model continuously modifies the prediction results of key variables through 
Reinforcement Learning. Meanwhile, to adapt the solver to different structures of CNFs and 



find glue variables of SAT problems, we design a suitable network pattern that could solve 
CNFs via neural networks. Figure 3 shows the overall flow chart of our algorithm. We will 
describe the steps that need to take to reach the ultimate goal in this chapter .  
 

 
Figure 3: Overall Flow of the GVE Algorithm 

 
The CNF formula is transformed into a bipartite graph  where  and  are a 
collection of variables and Boolean symbols, respectively. There are two types of nodes 
representing variables and clauses in graph . The Boolean symbol  where 

 connecting the  clause and the variable  
indicate that the clause contains the variable.  
 
Based on the above, for a SAT problem with  clauses, we define a way of measuring 
model as 

 (1) 
 
where  to represent the graph structure, that is, the combination of the output result of the 
previous step and the corresponding graph structure of the original CNF formula.  is the 
variable embedding results that related to some clause .  is an abstract representation of 
our entire network structure which contains graph representation layer, glue variables 
prediction layer and variables value prediction layer. 
 
2.1. The Inductive Graph Learning 
 
We adopts an unsupervised training method, assuming that each variable takes a value of true 
to determine the label of the clause, that is, if all the literals of the clause are negative, the 
clause is negative. A group of aggregator functions is trained to aggregate feature information 
from adjacent nodes list of a node from which we randomly sample in the process of graph 
learning. In our model, clauses and variables are used as learning nodes respectively. The list 
of adjacent nodes is the set of all clauses that are related to the variables in the clause, and 
the set of all the variables that appear in the same clause with a certain variable. In the 
figure below, orange circles represent clause nodes, and blue circles represent variable nodes. 
Take node 1 as an example, it will aggregate the characteristics of all adjacent nodes, and the 
arrow represents its source of information. In summary, the adjacent list of variable 1 
contains clause nodes a, b and variable nodes 2,3,4,5. Thus, we complete the bidirectional 
transmission of feature information. Figure 5 indicates the binary encoding method of a CNF. 
As shown, the left and right half of Figure 5(b) represent  and , respectively.  
 



 
Figure 4: Schematic Diagram of the Two 

Sources of Feature Aggregation 

 
Figure 5: Binary Encoding Example of a 

CNF 
 

 
Figure 6: Architecture Diagram of Graph Aggregation 

 
Figure 6 shows the architecture diagram of graph aggregation. For each variable  there will 
be a list  “adjacent” to it, which contains all variables that have a direct or indirect 
relationship with it. Therefore, according to the aforementioned classification, the adjacent 
list is also expressed as  and . We encode them so that each variable can fully learn 
the characteristics of the variables related to it. We use the formula below to update  and 

 
 

 (2) 
 
where  is a multi-layer linear neural network with  as the parameter. Since the graph 
transformed by CNF is a bipartite graph with two kinds of nodes, we need to aggregate again 
 

 (3) 
 
where  represents the list of clauses that contains the variable -- that is, all the clauses in 
which the variable appears and  is a learnable parameter. Take the CNF formula in figure 
2(a) as an example, variable 1 corresponds to clause 1, 2. In this way, we get the updated  
and , and finally stitch them together to get the summarized graph structure 
 

 (4) 
 
where  is the activation layer with  as the parameter. 
 
 



2.2. The Survey-Propagation Based Neural Model 
 
After the steps of graph learning, we can be compatible with different CNF structures. Next, 
we designed a neural network based on the idea of Survey Propagation algorithm so that 
messages are passed between clauses and variables. For the convenience of representation, 
we define matrix , that is,  if there is an edge from variable  to 
some clause . Likewise, , which represents the relationship from clauses to 
edges. 
 

 (5) 
 (6) 

 
where  and  are matrices representing the relationship among edges, variables and 
clauses, and ,  are linear neural networks parameterized by different vectors  and . 

 and  are designed for calculating the value of “survey information” transmitted to 
each other. Notably, we have used the main idea of survey propagation algorithm to model 

. Next we divide  into positive and negative parts: , . Thus the main 
steps in  can be described as: 

 
 (7) 

 
here the variable  is for no effect to some clause. Then we update  as follows: 
 

 (8) 
 (9) 

 (10) 
 
Finally, in order to keep track of arbitrary long-term dependencies in the messaging queue, 
we apply recurrent neural network(Mikolov et al., 2011; Hochreiter & Schmidhuber, 1997) 
units to  and , that is 
 

 (11) 
 (12) 

 
where  and  are parameter vectors. In the process of solving the CNF problem, we use 
the Sigmoid function(Finney, 1952) as the activation layer of the model, hence all the 
variable value can be mapped to (0, 1). 
 
2.3. The Reinforcement Learning Model 
 
This step and the previous step are executed synchronously and can be seen as the typical 
framing of Reinforcement Learning(Boctor, 2013; Levin, Pieraccini & Eckert, 1998) scenario: 
our model generates some variables just like the actions taken by the agent, which are 
interpreted into a reward and a representation of the state, and then fed back into the agent.  
 
We apply batch normalization(Bjorck., Gomes, Selman & Weinberger, 2018) to the result of 
graph learning step to improve learning rate. Therefore, the embedding of all clauses can be 



obtained as 
 

 (13) 
   

where  refers to Batch Normalization layer as described in (Ioffe & Szegedy, 2015) and  
is a parameter that used to ensure the legality of calculations. After obtaining the embedding 
related to all clauses, we use this value  in turn to derive the embedding value of the 
variables, and apply a normalization to the intermediate in order to prepare for getting 
probability distribution of all variables, that is  
 

 (14) 
 
where  refers to normalization layer parameterized by the parameter  and  is a 
multi-layer neural network with adjustable parameters . Finally, we obtain the score 
distribution  of the all clauses, which represents the probability that the clause is a glue 
clause 
 

 (15) 
 
Similarly, we can calculate the probability distribution  by following 
 

 (16) 
 

here  and  are different parameters of neural network . The value  has provided 
some inspiration for finding glue variables so that we can use it to combined with the 
prediction worked out from Section 3.2 to simplify the origin CNF formula.  

 
3. Training a GVE Solver 
 
Figure 7 below shows the schematic flow of GVE algorithm. It can be seen that GVE is 
mainly divided into three parts, graph learning, variable prediction and CNF simplification. 

 



 
Figure 7: Schematic Flow of the GVE Algorithm 

 
In order to train a GVE model, we would reduce losses from the above three parts, so we 
define the final loss as 
 

 (17) 
 
where  represents the loss of the glue clause prediction model and  represents 
the loss of the variable value prediction of the model. We modified the classic glucose 
solver(Audemard & Simon, 2014) so that we can used it to calculate the LBD 
scores(Audemard & Simon, 2009) of all clauses, denoted as . We add up the scores of 
all the clauses where the variable is located to get the score of the variable. After a softmax 
operation, we get  
 



 (18) 
 
For all variables, we can get the probability distribution that if a variable is a glue variable , 
so that  
 

 (19) 
 
where  is the probability distribution of glue variables given by the deterministic solver. 
Hence we achieve the purpose of model adjustment by minimizing the difference between the 
fitting probability and the target probability. 
 
For reasons of avoiding to label the data before training, we treat the final result as a 
classification problem for subcategories -- each clause has two categories, corresponding to 
true or false. We use the most classic cross -- entropy loss function(Parsian & Nematollahi, 
1996) of the classification algorithm as the prototype of the loss function 

 

 (20) 
 (21) 

 
where  represents a clause in CNF, and ,  represents the graph structure and 
variables related to clause . Note that  is a temperature parameter(Amizadeh et al., 2019) 
in the formula, and we will take a larger value as its initial value, and then gradually decrease 
to 0 during the training process. 



 
 

Algorithm 1 describes the calculation process of the GVE model. After the step of graph 
induction learning, the representation  of all variables is obtained. We use  as the basis 
for obtaining the scores of glue variables and the prediction of all variable values. In the 
prediction step, we compound the results of the two, select variables with higher scores from 
the results of the glued variables, where the number of selected variables is related to the 
number of variables in the original CNF, and then fix these variables according to the results 
of the variable prediction model. Next we perform the step of “simplification”: if the value of 
a variable is positive after compounding with its sign, we delete the related clause from the 
original CNF; otherwise, we delete the variable from the clause where it is located. This step 
greatly simplifies the original problem, so that the simplified CNF can be solved quickly with 
a deterministic solver. 
 
4. Experiments 
 
We compared our model with two different solutions: (a) recently proposed model 
PDP(Amizadeh et al., 2019) using pure neural network method, (b) CADICAL(QUEUE, 
2019), the top solver in the SATCOMP competition. The experimental data are from the 
official data sets provided by the SATCOMP 2003-2019. We have compared the above 
solutions in terms of accuracy and solving speed. 
 



PDP 
 
Since the PDP model has different model training parameters for different data types, we 
selected representative "modular"(Ansótegui, Giráldez-Cru & Levy, 2012; Walsh, 1999) data 
as the training set to train the PDP model. The model structure is set with the author's default 
parameters, and the best model trained is used as the experimental solver. The PDP model has 
the advantage of batch solving, so in order to facilitate comparison, we record the time to 
solve each SAT problem separately. 
 
CADICAL 
 
The solver has a lot of parameters that can be configured, and the default settings are used 
here. We use the "total process time since initialization" in the CADICAL output as its 
solving time for comparison. 
 
4.1. Data sets 
 
In order to compare the effect of GVE with different solvers, we selected the CNF data set 
with the number of variables in the range of (0, 3000) from the SATCOMP 2003-2019 
competition benchmarks. In several data intervals of the number of variables, it is divided 
into the following aspects: gradual increase in the number of variables, gradual increase in 
the the ratio of the number of clauses to the number of variables, and the same number of 
variables and clauses for comparison. 
 
4.2. Results 
 
Accuracy 
 
Since CADICAL is a deterministic solver, no comparison is made in the part of correctness. 
The main object of comparison here is the accuracy of GVE and PDP model in multi-interval 
data sets. To ensure the performance of the trained PDP model, a large number of data sets 
are needed as training sets. Therefore, in addition to the data provided by SATCOMP, our 
training sets also contain part of the data generated by the generator. At least 1000 CNFs are 
prepared for training and 200 CNFs are selected for each data interval in testing process. For 
the sake of improving the accuracy of PDP, in particular, we use the optional parameter 
“local_search_iteration” of the model which increases the number of times of randomly 
flipping unsatisfiable variables after the model is applied. We also set another variable 
“batch_replication” to increase the number of repeated attempts. 
 
Table 1 is a comparison result of the accuracy of two models. An explanation is needed here. 
Since PDP is a pure neural network model which does have a good performance when 
solving ordinary CNFs, but due to the high difficulty of the data we use, it is very difficult to 
determine all variables only by machine learning. Therefore, its performance is far from 
satisfactory. Meanwhile, it also shows the original intention of our proposed model from 
another direction: it is difficult to solve the whole problems, so we can settle for second beat 
and only solve the core part of the SAT problem, thereby reducing the overall workload. 
 
 
 
 



Name (0, 500] (500, 1000] (1000, 1500] (1500, 3000) 
GVE 81.1% 76.7% 75.01% 72.3% 
PDP 6.7% 5.1% 3.2% 1.2% 

Table 1: Comparison of the Accuracy of GVE and PDP 
 
In order to improve the accuracy rate, we will try to change the determined variables for the 
CNF that is “UNSAT” for the first time, and then repeat the simplification and solution 
process. Figure 8 shows accuracy and average number of retries, which indicates GVE can 
basically control the number of retries below ten times, which is directly related to the 
difficulty of the problem. 

 

 
Figure 8: Accuracy of GVE and Retry Times in Different Data Intervals. Retry Times Means 

that We Change the Number of Variables We Have Determined, Re-simplify and then Pass the 
New CNF to the Solver for Solution. the Abscissa Represents the Upper Bound of the Clause 

Number Interval, for Example, 500 Represents the Interval (0, 500).  
 
Degree of Simplification 
 
Due to the fact that GVE uses the idea of machine learning to solve part of the problem, the 
number of removed clauses which is determined according to the number of simplified 
variables indicates whether it is good enough to help reduce the workload of the original 
problem. Figure 9 shows the average reduction ratio of GVE to original CNF formula in 
different interval data sets. The experimental results shows that after fixing some variables, 
GVE not only reduces these fixed variables, but also some associated variables are deleted 
indirectly during the process of simplification because of the deletion of their related clauses. 
 



 
Figure 9: Reduction ratio of GVE to original CNF formula.  

 
Time 
 
The main comparison objects in this part are the GVE model and the CADICAL solver. The 
following results can be obtained based on the same data set. Note that here we only compare 
among the data sets where the GVE model can get the correct results, and the data sets for 
which the correct answer is not available will be ignored. The time of GVE consists of two 
parts: model solution time(the time to determine the glue variable plus the time to derive the 
value of the variable), and the time to use the deterministic solver to solve the simplified CNF. 
In order to ensure the fairness of the comparison experiment, the deterministic solver here 
also uses CADICAL. We use the "total process time since initialization" value in the output 
result as the time for this part. 
 
Figure 10-12 shows the comparison results of multiple data intervals. It can be seen from the 
figures that in the case of a simpler SAT problems, the performance of GVE is similar to the 
CADICAL solver, and they both takes very little time; as the difficulty of the problem 
increases, that is, when the complexity of CNF formula gradually increases, the GVE model 
has a stable performance. 
 



 
Figure 10: The Time for CADICAL vs. GVE on Simple Cnfs. as the Complexity of the 

Problem Increases, the Advantages of GVE Gradually Appears. 
 
For those complicated ones, especially the problems that CADICAL needs hundreds of 
seconds to solve, GVE can also control the solution time to dozens of orders of magnitude, 
which can be said to have outstanding performance on more complex problems. 
 

 
Figure 11: The Time for CADICAL vs. GVE on Hard Cnfs. although CADICAL Performance 

Fluctuates Greatly, GVE Always Performs Relatively Stable. 
 
In order to analyze the performance of GVE, we also compared the solution time of GVE 
model and the deterministic solver from the perspective of variable changes. 
 

 



 
Figure 12: The Time Changes for CADICAL vs. GVE with the Number of Variables. 

 
For a group of CNFs with similar variables, the solution time of the deterministic solver 
fluctuates greatly. GVE makes the solution time stable within a certain interval by finding 
and then fixing the glue variables. 
 

 
Figure 13: The Time for CADICAL vs. GVE On Cnfs that Have Similar Number of Variables. 
It Can Be Seen that The Pure Model Part of GVE Performs Stable, that Is, We Can Determine 

the Glue Variables of a CNF and its Value ina Short Time. 
 
If the solution result of a CNF is UNSAT, in order to improve the accuracy of the GVE model 
as well as avoiding erroneous results caused by model errors, we will perform multiple 
calculations on such CNFs. This process is called “downgrade calculation”. In the process of 
downgrade calculation, GVE will reduce the number of fixed variables, re-simplify the 
original CNF, and then solve it until the correct result is obtained. Figure 14 shows the 
change in the number of deterministic variables and the time taken for the downgrade 
solution. 
 



 
Figure 14: Number of Variables Fixed and Time Required after Downgrade Solution 

 
UNSAT Instances 
 
Excluding errors caused by model errors, there is another possibility that this CNF is indeed 
UNSAT. Therefore, after a few failed attempts, GVE will start from another angle and try to 
find the “UnsatCore” of the original problem. Due to the characteristics of UnsatCore, we use 
the obtained glue variables to form new CNF, designated , which is formed by the 
original CNF and new clauses that consists of the different combinations of glue variables as 
well as their signs. Figure 15 shows the comparison of some GVE and CADICAL solution 
results and solving time they need on UNSAT CNFs. 
 

 
Figure 15: The Time for CADICAL vs. GVE on UNSAT Cnfs. GVE-Solver Time Is the Sum 

of Time that Solving All Possible CNF Included in  
 
From the above experimental results, it can be seen that GVE is a very useful compound 
solver. We have also given full play to the advantages of model learning algorithms and 
deterministic solvers. The idea of partial simplification can greatly reduce the solution time 
for complex problems. At the same time, UnsatCore, which can solve unsolvable problems, 
also greatly improves the credibility of the model. 
 
Conclusion 

 
In this article, we propose a composite model GVE to solve complex SAT problems. We 
apply the idea of graph induction to the learning of CNF structure which avoids the 
complicated operation of training different models for different types of SAT problems, so 



there is no need to classify the data first. Secondly, we use reinforcement learning to find the 
glue variables and glue clauses of the CNF formula, and then use a neural network model 
designed based on the idea of SP algorithm to determine the values of the glue variables 
which are used to process the original SAT problem. Finally we use a deterministic solver to 
solve the simplified CNF. This approach allows us to fix only the most critical part of the 
variables for the entire problem, reducing the impact of model errors on problem solving, and 
at the same time improving the speed of solving complex problems. 
 
Note that GVE may not be effective for originally simple problems, even slower than 
deterministic solver, but it has a significant performance improvement for those complex 
problems. This is also our intention of designing this model. GVE model provides an idea of 
combining neural networks and deterministic solvers, and our results also reveal the 
tremendous potential for pursuing this goal. 
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