
Elimination Mechanism of Glue Variables for Solving SAT Problems in Linguistics

Ziwei Zhang, Beijing University of Posts and Telecommunications, China
Yang Zhang, Beijing University of Posts and Telecommunications, China

The Asian Conference on Language 2021
Official Conference Proceedings

Abstract
We propose GVE(Glue Variables Elimination), an algorithm that organically combines neural
networks with a deterministic solver to solve SAT(Boolean satisfiability problem) in the field
of linguistics. It gives full play to their respective advantages by following steps: (a) applying
a graph learning algorithm to learn the structure of the CNF formula; (b) finding the glue
variables of the problem; (c) determining their values; (d) simplifying the original formula; (e)
using a deterministic solver to solve the simplified problem. We use SATCOMP 2003-2019
benchmarks as the test data sets, and compare our model with the SAT solver CADICAL that
has performed well in SATCOMP 2019 as well as the neural network model PDP proposed in
recent years. GVE model shows good performance. As the complexity of the problem
increases, the solution time can be about 20%-95% quicker than the deterministic solver,
while at the same time around 72% more accurate than PDP model.

Keywords: Linguistics, Boolean Satisfiability Problem, Graph Learning, Survey Propagation,
Reinforcement Learning, Glue Variables

iafor
The International Academic Forum

www.iafor.org

Introduction

In industrial production, many questions can be converted into satisfiability questions
(Constraint Satisfaction Problems (CSP)(Kumar, 2015)), especially Boolean satisfaction
problem(SAT). Boolean Satisfiability, in particular, is the most fundamental NP-complete
(Garey & Johnson, 1979) problem in computer science with a wide range of applications in
various areas(Biere, Heule & van Maaren, 2009; Knuth, 1997). There is no deterministic
Turing algorithm to solve the SAT problem in polynomial complexity(Van Leeuwen, 1991).
However, SAT problems are inevitable in practical application, for example, in the fields of
engineering technology, complexity theory(Karp, 1972; Aho & Hopcroft, 1974), military,
artificial intelligence(Vizel, Weissenbacher & Malik, 2015), concurrency control, transpor-
tation, intelligent traffic control and so on. From the point of view of problem solving,
complete algorithm, represented by Davis-Putnam proposes based on the recollection
search(Nieuwenhuis, Oliveras & Tinelli, 2005; Zhang & Malik, 2002), can solve both
satisfiability problems and unsatisfiable problems, though it can take a long time.

Machine Learning has been used for different aspects of CSP and SAT solving from branch
prediction(Liang, Ganesh, Poupart & Czarnecki, 2016) algorithm to hyper-parameter
selection(Xu, Hutter, Hoos & Leyton-Brown, 2008). These algorithms all encode the input
SAT instances to different degrees while interconnectedness of the CNF formula exists in its
original structure. There is a serious risk that those feature extraction techniques will lose the
hidden information of the formula during procedure of data processing. For instance,
frameworks such as Graph Neural Network(Li, Tarlow, Brockschmidt & Zemel, 2015),
PossibleWorldNets(Evans, Saxton, Amos, Kohli & Grefenstette, 2018), NeuroSAT
framework(Selsam et al., 2018), the Circuit-SAT framework(Amizadeh, Matusevych &
Weimer, 2018) and Recurrent Relational Networks for Sudoku(Palm, Paquet & Winther, 2018)
et al. have been quite successful in capturing the inherent structure of the SAT instances by
embedding them into traditional vector spaces that are suitable for Machine Learning models.
However, they don’t have a persuasive explanation why their networks effective and how
they work. Most importantly, their accuracy has a sharp decline as the number of variables or
complexity of the SAT problems increases. Furthermore, the previous researches of solving
SAT problems that use pure neural network (e.g. PDP(Amizadeh, Matusevych & Weimer,
2019)), show a decline trend of performance with the increment of problem scale, most of
which are limited by the structures of CNF formulas. The uncertainty of their results also
make them have little practical value.

Our contributions are as follows:
(a) The method of graph learning and representation proposed by Hamilton, Ying and
Leskovec(2017) is used for the sake of learning internal features of SAT problems. Different
from the previous work, which only has one kind of node in the graph, our graph has two
kinds of nodes. We see the CNF formula as a bipartite graph with literals and clauses as the
two type of nodes, and train a set of aggregator functions based on Random Walk(Spitzer,
2013) and Graph Convolution Network(Geng et al., 2019) that learn to aggregate feature
information from a node’s local neighborhood that contains both variable nodes and clause
nodes. In this way, we are able to adapt to the different CNF structures and train a general
solver to solve all kinds of questions which can significantly improve efficiency.

(b) Considering that the performance of neural model is limited by the complexity of the
problem, we do not attempt to solve the whole question, but rather focus on finding out glue
variables and their values -- those likely to occur in glue clauses(Audemard & Simon, 2009),

a type of conflict clauses known to be extremely important to the reasoning of modern
CDCL(Heule, Kullmann, Wieringa & Biere, 2011) SAT solvers as a reinforcement task and
then solve them through a Survey Propagation Algorithm idea based neural network. Finally
we use the complete solver CADICAL (QUEUE, 2019) to solve the simplified formula.
Furthermore, our framework is designed in unsupervised manner that allows GVE to be
trained without training data markup.

(c) Unlike previous works only give a answer either “satisfiable” or “unsatisfiable”, for the
UNSAT CNF, we not only show the result, but also the UnsatCore -- the combination of
clauses whose subsets are still unsatisfiable, is derived as a proof of the answer.

We evaluate our algorithm on thousand near CNF instances that chosen from SATCOMP
2013-2019 benchmarks. Our experimental results show the superiority of the GVE
framework compared to both neural and classical solvers.

Preliminaries

A propositional logic formula, also called Boolean expression, is built from variables,
operators AND (conjunction, also denoted by ∧), OR (disjunction, ∨), NOT (negation, ¬),
and parentheses. The SAT problem is to check whether a given formula is satisfiable or not. If
a variable assignment exists which can make every clause TRUE, the formula is called
satisfiable. On the other hand, if no such assignment exists, the function expressed by the
formula is FALSE for all possible variable assignments and the SAT problem is unsatisfiable.
A disjunctive expression of a finite number of variables is called a clause. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses (or a single clause).

1.1. Solving Algorithms Bases

Glue levels and glue variables Glue variable is an important concept in CDCL algorithm
(Conflict-Driven Clause Learning) proposed by Heule et al.(2011). Here we introduce the
concept of unit propagation(Nieuwenhuis et al., 2005): given a clause , if
all literals but are set to 0, then is equivalent to the unit clause (), and the value of

 is forced to 1. Glue level counts the number of decision levels involved in the clause. A
clause with low glue level requires fewer decisions to become unit. Variables in clauses with
glue level≤2 are called glue variables. Finding glue variables had greatly improved the
performance of existing technologies and has now become a standard practice.

SP Algorithm

SP (Survey Propagation) (Braunstein, Mézard & Zecchina, 2005; Mezard & Montanari, 2009)
algorithm is a typical incomplete algorithm of which principle is derived from the theory of
the spin glass system (Sherrington & Kirkpatrick, 1975) in statistical physics. SP applies a
message passing technology to pass the probability of the variable to make the clause it
located unsatisfiable, and then uses the investigation iteration function to repeatedly calculate
the message passed in the factor graph. If this process converges, a set of marginal probability
distributions of the values of all variables will be finally obtained. Through the probability
distribution, the possible value of each variable can be known. Then the SP algorithm uses
the Walksat(Hoos, 2002) algorithm to fix one or some variables to simplify the original
problem. Walksat is an extension of Random Walk. Their fundamental idea is to randomly
generate an initial assignment, and then select a variable to flip under certain conditions until

the maximum number of flips is reached or a solution is found. If the problem is satisfiable, a
set of solutions can be finally obtained after repeating the above process.

1.2. Graph Representation

Figure 1 shows the graph representation model of clauses and variables. Circles represent
variable nodes, and squares represent clause nodes. There are two types of edges, which
represent the sign of the variable in the clause. This graph model can establish the adjacency
matrix between variables and clauses, and can intuitively reflect which clauses a certain
variable is related to. For example, clause has three variables , , , so the origin
formula can be represent as . In the same way, the formula in the
figure can be restored to the original mathematical expression:

Figure 1: Graph Representation Structure of

Clauses and Variables

Figure 2: A CNF Conversion Example

In order to ignore the signs in the original formula during training, we split the variables into
positive and negative terms, and regard the negative form of each variable as a new variable.
Figure 2 shows a CNF conversion example intuitively. As for training, for a CNF formula
with clauses and variables, it will eventually be expressed as an 0-1 matrix

 which contains all positive variables and matrix
which contains their negations.

Instead of training a distinct embedding vector for each node as traditional graph
representation methods do, we train a set of aggregator functions that learn to aggregate
feature information from a node’s local neighborhood. Each aggregator function aggregates
information from a different number of hops, or search depth, away from a given node.

2. Network Architecture

Since it is difficult to solve the difficult SAT problems by using pure neural networks, we
introduce the idea of model compound -- the combination of neural networks and a
deterministic solver. The key to solve the SAT problem is to find out the key variables in
CNF so as to simplify the original formula. When interacting with the deterministic solver,
the model continuously modifies the prediction results of key variables through
Reinforcement Learning. Meanwhile, to adapt the solver to different structures of CNFs and

find glue variables of SAT problems, we design a suitable network pattern that could solve
CNFs via neural networks. Figure 3 shows the overall flow chart of our algorithm. We will
describe the steps that need to take to reach the ultimate goal in this chapter .

Figure 3: Overall Flow of the GVE Algorithm

The CNF formula is transformed into a bipartite graph where and are a
collection of variables and Boolean symbols, respectively. There are two types of nodes
representing variables and clauses in graph . The Boolean symbol where

 connecting the clause and the variable
indicate that the clause contains the variable.

Based on the above, for a SAT problem with clauses, we define a way of measuring
model as

 (1)

where to represent the graph structure, that is, the combination of the output result of the
previous step and the corresponding graph structure of the original CNF formula. is the
variable embedding results that related to some clause . is an abstract representation of
our entire network structure which contains graph representation layer, glue variables
prediction layer and variables value prediction layer.

2.1. The Inductive Graph Learning

We adopts an unsupervised training method, assuming that each variable takes a value of true
to determine the label of the clause, that is, if all the literals of the clause are negative, the
clause is negative. A group of aggregator functions is trained to aggregate feature information
from adjacent nodes list of a node from which we randomly sample in the process of graph
learning. In our model, clauses and variables are used as learning nodes respectively. The list
of adjacent nodes is the set of all clauses that are related to the variables in the clause, and
the set of all the variables that appear in the same clause with a certain variable. In the
figure below, orange circles represent clause nodes, and blue circles represent variable nodes.
Take node 1 as an example, it will aggregate the characteristics of all adjacent nodes, and the
arrow represents its source of information. In summary, the adjacent list of variable 1
contains clause nodes a, b and variable nodes 2,3,4,5. Thus, we complete the bidirectional
transmission of feature information. Figure 5 indicates the binary encoding method of a CNF.
As shown, the left and right half of Figure 5(b) represent and , respectively.

Figure 4: Schematic Diagram of the Two

Sources of Feature Aggregation

Figure 5: Binary Encoding Example of a

CNF

Figure 6: Architecture Diagram of Graph Aggregation

Figure 6 shows the architecture diagram of graph aggregation. For each variable there will
be a list “adjacent” to it, which contains all variables that have a direct or indirect
relationship with it. Therefore, according to the aforementioned classification, the adjacent
list is also expressed as and . We encode them so that each variable can fully learn
the characteristics of the variables related to it. We use the formula below to update and

 (2)

where is a multi-layer linear neural network with as the parameter. Since the graph
transformed by CNF is a bipartite graph with two kinds of nodes, we need to aggregate again

 (3)

where represents the list of clauses that contains the variable -- that is, all the clauses in
which the variable appears and is a learnable parameter. Take the CNF formula in figure
2(a) as an example, variable 1 corresponds to clause 1, 2. In this way, we get the updated
and , and finally stitch them together to get the summarized graph structure

 (4)

where is the activation layer with as the parameter.

2.2. The Survey-Propagation Based Neural Model

After the steps of graph learning, we can be compatible with different CNF structures. Next,
we designed a neural network based on the idea of Survey Propagation algorithm so that
messages are passed between clauses and variables. For the convenience of representation,
we define matrix , that is, if there is an edge from variable to
some clause . Likewise, , which represents the relationship from clauses to
edges.

 (5)
 (6)

where and are matrices representing the relationship among edges, variables and
clauses, and , are linear neural networks parameterized by different vectors and .

 and are designed for calculating the value of “survey information” transmitted to
each other. Notably, we have used the main idea of survey propagation algorithm to model

. Next we divide into positive and negative parts: , . Thus the main
steps in can be described as:

 (7)

here the variable is for no effect to some clause. Then we update as follows:

 (8)
 (9)

 (10)

Finally, in order to keep track of arbitrary long-term dependencies in the messaging queue,
we apply recurrent neural network(Mikolov et al., 2011; Hochreiter & Schmidhuber, 1997)
units to and , that is

 (11)
 (12)

where and are parameter vectors. In the process of solving the CNF problem, we use
the Sigmoid function(Finney, 1952) as the activation layer of the model, hence all the
variable value can be mapped to (0, 1).

2.3. The Reinforcement Learning Model

This step and the previous step are executed synchronously and can be seen as the typical
framing of Reinforcement Learning(Boctor, 2013; Levin, Pieraccini & Eckert, 1998) scenario:
our model generates some variables just like the actions taken by the agent, which are
interpreted into a reward and a representation of the state, and then fed back into the agent.

We apply batch normalization(Bjorck., Gomes, Selman & Weinberger, 2018) to the result of
graph learning step to improve learning rate. Therefore, the embedding of all clauses can be

obtained as

 (13)

where refers to Batch Normalization layer as described in (Ioffe & Szegedy, 2015) and
is a parameter that used to ensure the legality of calculations. After obtaining the embedding
related to all clauses, we use this value in turn to derive the embedding value of the
variables, and apply a normalization to the intermediate in order to prepare for getting
probability distribution of all variables, that is

 (14)

where refers to normalization layer parameterized by the parameter and is a
multi-layer neural network with adjustable parameters . Finally, we obtain the score
distribution of the all clauses, which represents the probability that the clause is a glue
clause

 (15)

Similarly, we can calculate the probability distribution by following

 (16)

here and are different parameters of neural network . The value has provided
some inspiration for finding glue variables so that we can use it to combined with the
prediction worked out from Section 3.2 to simplify the origin CNF formula.

3. Training a GVE Solver

Figure 7 below shows the schematic flow of GVE algorithm. It can be seen that GVE is
mainly divided into three parts, graph learning, variable prediction and CNF simplification.

Figure 7: Schematic Flow of the GVE Algorithm

In order to train a GVE model, we would reduce losses from the above three parts, so we
define the final loss as

 (17)

where represents the loss of the glue clause prediction model and represents
the loss of the variable value prediction of the model. We modified the classic glucose
solver(Audemard & Simon, 2014) so that we can used it to calculate the LBD
scores(Audemard & Simon, 2009) of all clauses, denoted as . We add up the scores of
all the clauses where the variable is located to get the score of the variable. After a softmax
operation, we get

 (18)

For all variables, we can get the probability distribution that if a variable is a glue variable ,
so that

 (19)

where is the probability distribution of glue variables given by the deterministic solver.
Hence we achieve the purpose of model adjustment by minimizing the difference between the
fitting probability and the target probability.

For reasons of avoiding to label the data before training, we treat the final result as a
classification problem for subcategories -- each clause has two categories, corresponding to
true or false. We use the most classic cross -- entropy loss function(Parsian & Nematollahi,
1996) of the classification algorithm as the prototype of the loss function

 (20)
 (21)

where represents a clause in CNF, and , represents the graph structure and
variables related to clause . Note that is a temperature parameter(Amizadeh et al., 2019)
in the formula, and we will take a larger value as its initial value, and then gradually decrease
to 0 during the training process.

Algorithm 1 describes the calculation process of the GVE model. After the step of graph
induction learning, the representation of all variables is obtained. We use as the basis
for obtaining the scores of glue variables and the prediction of all variable values. In the
prediction step, we compound the results of the two, select variables with higher scores from
the results of the glued variables, where the number of selected variables is related to the
number of variables in the original CNF, and then fix these variables according to the results
of the variable prediction model. Next we perform the step of “simplification”: if the value of
a variable is positive after compounding with its sign, we delete the related clause from the
original CNF; otherwise, we delete the variable from the clause where it is located. This step
greatly simplifies the original problem, so that the simplified CNF can be solved quickly with
a deterministic solver.

4. Experiments

We compared our model with two different solutions: (a) recently proposed model
PDP(Amizadeh et al., 2019) using pure neural network method, (b) CADICAL(QUEUE,
2019), the top solver in the SATCOMP competition. The experimental data are from the
official data sets provided by the SATCOMP 2003-2019. We have compared the above
solutions in terms of accuracy and solving speed.

PDP

Since the PDP model has different model training parameters for different data types, we
selected representative "modular"(Ansótegui, Giráldez-Cru & Levy, 2012; Walsh, 1999) data
as the training set to train the PDP model. The model structure is set with the author's default
parameters, and the best model trained is used as the experimental solver. The PDP model has
the advantage of batch solving, so in order to facilitate comparison, we record the time to
solve each SAT problem separately.

CADICAL

The solver has a lot of parameters that can be configured, and the default settings are used
here. We use the "total process time since initialization" in the CADICAL output as its
solving time for comparison.

4.1. Data sets

In order to compare the effect of GVE with different solvers, we selected the CNF data set
with the number of variables in the range of (0, 3000) from the SATCOMP 2003-2019
competition benchmarks. In several data intervals of the number of variables, it is divided
into the following aspects: gradual increase in the number of variables, gradual increase in
the the ratio of the number of clauses to the number of variables, and the same number of
variables and clauses for comparison.

4.2. Results

Accuracy

Since CADICAL is a deterministic solver, no comparison is made in the part of correctness.
The main object of comparison here is the accuracy of GVE and PDP model in multi-interval
data sets. To ensure the performance of the trained PDP model, a large number of data sets
are needed as training sets. Therefore, in addition to the data provided by SATCOMP, our
training sets also contain part of the data generated by the generator. At least 1000 CNFs are
prepared for training and 200 CNFs are selected for each data interval in testing process. For
the sake of improving the accuracy of PDP, in particular, we use the optional parameter
“local_search_iteration” of the model which increases the number of times of randomly
flipping unsatisfiable variables after the model is applied. We also set another variable
“batch_replication” to increase the number of repeated attempts.

Table 1 is a comparison result of the accuracy of two models. An explanation is needed here.
Since PDP is a pure neural network model which does have a good performance when
solving ordinary CNFs, but due to the high difficulty of the data we use, it is very difficult to
determine all variables only by machine learning. Therefore, its performance is far from
satisfactory. Meanwhile, it also shows the original intention of our proposed model from
another direction: it is difficult to solve the whole problems, so we can settle for second beat
and only solve the core part of the SAT problem, thereby reducing the overall workload.

Name (0, 500] (500, 1000] (1000, 1500] (1500, 3000)
GVE 81.1% 76.7% 75.01% 72.3%
PDP 6.7% 5.1% 3.2% 1.2%

Table 1: Comparison of the Accuracy of GVE and PDP

In order to improve the accuracy rate, we will try to change the determined variables for the
CNF that is “UNSAT” for the first time, and then repeat the simplification and solution
process. Figure 8 shows accuracy and average number of retries, which indicates GVE can
basically control the number of retries below ten times, which is directly related to the
difficulty of the problem.

Figure 8: Accuracy of GVE and Retry Times in Different Data Intervals. Retry Times Means

that We Change the Number of Variables We Have Determined, Re-simplify and then Pass the
New CNF to the Solver for Solution. the Abscissa Represents the Upper Bound of the Clause

Number Interval, for Example, 500 Represents the Interval (0, 500).

Degree of Simplification

Due to the fact that GVE uses the idea of machine learning to solve part of the problem, the
number of removed clauses which is determined according to the number of simplified
variables indicates whether it is good enough to help reduce the workload of the original
problem. Figure 9 shows the average reduction ratio of GVE to original CNF formula in
different interval data sets. The experimental results shows that after fixing some variables,
GVE not only reduces these fixed variables, but also some associated variables are deleted
indirectly during the process of simplification because of the deletion of their related clauses.

Figure 9: Reduction ratio of GVE to original CNF formula.

Time

The main comparison objects in this part are the GVE model and the CADICAL solver. The
following results can be obtained based on the same data set. Note that here we only compare
among the data sets where the GVE model can get the correct results, and the data sets for
which the correct answer is not available will be ignored. The time of GVE consists of two
parts: model solution time(the time to determine the glue variable plus the time to derive the
value of the variable), and the time to use the deterministic solver to solve the simplified CNF.
In order to ensure the fairness of the comparison experiment, the deterministic solver here
also uses CADICAL. We use the "total process time since initialization" value in the output
result as the time for this part.

Figure 10-12 shows the comparison results of multiple data intervals. It can be seen from the
figures that in the case of a simpler SAT problems, the performance of GVE is similar to the
CADICAL solver, and they both takes very little time; as the difficulty of the problem
increases, that is, when the complexity of CNF formula gradually increases, the GVE model
has a stable performance.

Figure 10: The Time for CADICAL vs. GVE on Simple Cnfs. as the Complexity of the

Problem Increases, the Advantages of GVE Gradually Appears.

For those complicated ones, especially the problems that CADICAL needs hundreds of
seconds to solve, GVE can also control the solution time to dozens of orders of magnitude,
which can be said to have outstanding performance on more complex problems.

Figure 11: The Time for CADICAL vs. GVE on Hard Cnfs. although CADICAL Performance

Fluctuates Greatly, GVE Always Performs Relatively Stable.

In order to analyze the performance of GVE, we also compared the solution time of GVE
model and the deterministic solver from the perspective of variable changes.

Figure 12: The Time Changes for CADICAL vs. GVE with the Number of Variables.

For a group of CNFs with similar variables, the solution time of the deterministic solver
fluctuates greatly. GVE makes the solution time stable within a certain interval by finding
and then fixing the glue variables.

Figure 13: The Time for CADICAL vs. GVE On Cnfs that Have Similar Number of Variables.
It Can Be Seen that The Pure Model Part of GVE Performs Stable, that Is, We Can Determine

the Glue Variables of a CNF and its Value ina Short Time.

If the solution result of a CNF is UNSAT, in order to improve the accuracy of the GVE model
as well as avoiding erroneous results caused by model errors, we will perform multiple
calculations on such CNFs. This process is called “downgrade calculation”. In the process of
downgrade calculation, GVE will reduce the number of fixed variables, re-simplify the
original CNF, and then solve it until the correct result is obtained. Figure 14 shows the
change in the number of deterministic variables and the time taken for the downgrade
solution.

Figure 14: Number of Variables Fixed and Time Required after Downgrade Solution

UNSAT Instances

Excluding errors caused by model errors, there is another possibility that this CNF is indeed
UNSAT. Therefore, after a few failed attempts, GVE will start from another angle and try to
find the “UnsatCore” of the original problem. Due to the characteristics of UnsatCore, we use
the obtained glue variables to form new CNF, designated , which is formed by the
original CNF and new clauses that consists of the different combinations of glue variables as
well as their signs. Figure 15 shows the comparison of some GVE and CADICAL solution
results and solving time they need on UNSAT CNFs.

Figure 15: The Time for CADICAL vs. GVE on UNSAT Cnfs. GVE-Solver Time Is the Sum

of Time that Solving All Possible CNF Included in

From the above experimental results, it can be seen that GVE is a very useful compound
solver. We have also given full play to the advantages of model learning algorithms and
deterministic solvers. The idea of partial simplification can greatly reduce the solution time
for complex problems. At the same time, UnsatCore, which can solve unsolvable problems,
also greatly improves the credibility of the model.

Conclusion

In this article, we propose a composite model GVE to solve complex SAT problems. We
apply the idea of graph induction to the learning of CNF structure which avoids the
complicated operation of training different models for different types of SAT problems, so

there is no need to classify the data first. Secondly, we use reinforcement learning to find the
glue variables and glue clauses of the CNF formula, and then use a neural network model
designed based on the idea of SP algorithm to determine the values of the glue variables
which are used to process the original SAT problem. Finally we use a deterministic solver to
solve the simplified CNF. This approach allows us to fix only the most critical part of the
variables for the entire problem, reducing the impact of model errors on problem solving, and
at the same time improving the speed of solving complex problems.

Note that GVE may not be effective for originally simple problems, even slower than
deterministic solver, but it has a significant performance improvement for those complex
problems. This is also our intention of designing this model. GVE model provides an idea of
combining neural networks and deterministic solvers, and our results also reveal the
tremendous potential for pursuing this goal.

References

Aho, A. V., & Hopcroft, J. E. (1974). The design and analysis of computer algorithms.

Pearson Education India.

Amizadeh, S., Matusevych, S., & Weimer, M. (2018, September). Learning to solve

circuit-SAT: An unsupervised differentiable approach. In International Conference on
Learning Representations.

Amizadeh, S., Matusevych, S., & Weimer, M. (2019). PDP: A general neural framework for

learning constraint satisfaction solvers. arXiv preprint arXiv:1903.01969.

Ansótegui, C., Giráldez-Cru, J., & Levy, J. (2012, June). The community structure of SAT

formulas. In International Conference on Theory and Applications of Satisfiability
Testing (pp. 410-423). Springer, Berlin, Heidelberg.

Audemard, G., & Simon, L. (2009, June). Predicting learnt clauses quality in modern SAT

solvers. In Twenty-first International Joint Conference on Artificial Intelligence.

Audemard, G., & Simon, L. (2009). Glucose: a solver that predicts learnt clauses quality. SAT

Competition, 7-8.

Audemard, G., & Simon, L. (2014). Glucose in the SAT 2014 Competition. SAT

COMPETITION 2014, 31.

Biere, A., Heule, M., & van Maaren, H. (Eds.). (2009). Handbook of satisfiability (Vol. 185).

IOS press.

Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding batch

normalization. In Advances in Neural Information Processing Systems (pp.
7694-7705).

Boctor, L. (2013). Active-learning strategies: The use of a game to reinforce learning in

nursing education. A case study. Nurse education in practice, 13(2), 96-100.

Braunstein, A., Mézard, M., & Zecchina, R. (2005). Survey propagation: An algorithm for

satisfiability. Random Structures & Algorithms, 27(2), 201-226.

Evans, R., Saxton, D., Amos, D., Kohli, P., & Grefenstette, E. (2018). Can neural networks

understand logical entailment?. arXiv preprint arXiv:1802.08535.

Finney, D. J. (1952). Probit analysis: a statistical treatment of the sigmoid response curve.

Cambridge university press, Cambridge.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). San

Francisco: freeman.

Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., & Liu, Y. (2019, July). Spatiotemporal

multi-graph convolution network for ride-hailing demand forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 3656-3663).

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large
graphs. In Advances in neural information processing systems (pp. 1024-1034).

Heule, M. J., Kullmann, O., Wieringa, S., & Biere, A. (2011, December). Cube and conquer:

Guiding CDCL SAT solvers by lookaheads. In Haifa Verification Conference (pp.
50-65). Springer, Berlin, Heidelberg.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735-1780.

Hoos, H. H. (2002, July). An adaptive noise mechanism for WalkSAT. In AAAI/IAAI (pp.

655-660).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer

computations (pp. 85-103). Springer, Boston, MA.

Knuth, D. E. (1997). The art of computer programming (Vol. 3). Pearson Education.

Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A survey.AI

magazine,13(1), 32-32.

Levin, E., Pieraccini, R., & Eckert, W. (1998, May). Using Markov decision process for

learning dialogue strategies. In Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No.
98CH36181) (Vol. 1, pp. 201-204). IEEE.

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural

networks. arXiv preprint arXiv:1511.05493.

Liang, J. H., Ganesh, V., Poupart, P., & Czarnecki, K. (2016, July). Learning rate based

branching heuristic for SAT solvers. In International Conference on Theory and
Applications of Satisfiability Testing (pp. 123-140). Springer, Cham.

Mezard, M., & Montanari, A. (2009). Information, physics, and computation. Oxford

University Press.

Mikolov, T., Kombrink, S., Burget, L., Černocký, J., & Khudanpur, S. (2011, May).

Extensions of recurrent neural network language model. In 2011 IEEE international
conference on acoustics, speech and signal processing (ICASSP) (pp. 5528-5531).
IEEE.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2005, March). Abstract DPLL and abstract

DPLL modulo theories. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning (pp. 36-50). Springer, Berlin, Heidelberg.

Palm, R., Paquet, U., & Winther, O. (2018). Recurrent relational networks. In Advances in

Neural Information Processing Systems (pp. 3368-3378).

Parsian, A., & Nematollahi, N. (1996). Estimation of scale parameter under entropy loss
function. Journal of Statistical Planning and Inference, 52(1), 77-91.

QUEUE, S. D. CADICAL at the SAT Race 2019. SAT RACE 2019, 8.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., & Dill, D. L. (2018). Learning a

SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685.

Sherrington, D., & Kirkpatrick, S. (1975). Solvable model of a spin-glass. Physical review

letters, 35(26), 1792.

Spitzer, F. (2013). Principles of random walk (Vol. 34). Springer Science & Business Media.

Van Leeuwen, J. (Ed.). (1991). Handbook of theoretical computer science (vol. A) algorithms

and complexity. Mit Press.

Vizel, Y., Weissenbacher, G., & Malik, S. (2015). Boolean satisfiability solvers and their

applications in model checking. Proceedings of the IEEE, 103(11), 2021-2035.

Walsh, T. (1999, July). Search in a small world. In Ijcai (Vol. 99, pp. 1172-1177).

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: portfolio-based

algorithm selection for SAT. Journal of artificial intelligence research, 32, 565-606.

Zhang, L., & Malik, S. (2002, July). The quest for efficient boolean satisfiability solvers. In

International Conference on Computer Aided Verification (pp. 17-36). Springer,
Berlin, Heidelberg.

Contact email: zwzhang@bupt.edu.cn

