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Abstract 
 

This study employs a quasi-experimental design to investigate the differences in learning 
outcomes and performance of junior high school students from metropolitan areas in Taiwan 
under various regional environments when engaging with water resource topics integrated 
with Sustainable Development Goals (SDGs). Students engaged in diverse outdoor 
environmental education activities, followed by classroom instruction on related issues. Their 
learning was assessed through text reading comprehension tests and the creation of concept 
maps. AI-assisted tools were used to evaluate students’ learning progress and provide 
recommendations for deconstructing textual content. The preliminary research outcomes 
include: 1. Establishing practical models for cross-school collaboration to explore 
SDG-related topics; 2. Developing a process record for AI-assisted teaching evaluation and 
feedback systems; 3. Creating an assessment model utilizing AI to support concept map 
analysis; 4. Offering recommendations for the development of issue-oriented, cross-regional 
outdoor education curricula for sustainable development. 
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Introduction 
 
Integrating the United Nations Sustainable Development Goals (SDGs) into curricula has 
become a global educational trend. This approach enhances students’ awareness of global 
issues and fosters responsibility and engagement as global citizens. By exploring topics like 
climate change, inequality, and sustainable energy, students develop interdisciplinary 
thinking and problem-solving skills. SDG-focused education promotes active learning, 
critical thinking, and collaboration, making it a key strategy for cultivating 
sustainability-minded future generations. 
 
Taiwan’s subtropical climate and diverse ecosystems make it ideal for outdoor learning, 
particularly for water-related education. The Ministry of Education promotes outdoor 
programs where students explore rivers, conduct field experiments, and apply scientific 
methods such as water testing and biodiversity monitoring. Research shows that experiential 
learning improves both ecological understanding and emotional connection to environmental 
issues (Liefländer et al., 2013), while encouraging systems thinking about the links between 
environment, health, and social equity. 
 
Due to geographic constraints, not all students can directly access natural environments. In 
such cases, texts and recorded media serve as alternatives. This presents a challenge for 
educators: how to evaluate students’ understanding of unfamiliar contexts. Traditional tests 
may not capture the depth of students’ cognitive engagement. 
 
Concept maps help assess students’ grasp of content structure and their ability to organize 
information. Visualizing concept relationships reveals how well students connect and 
integrated ideas. Network-style maps often indicate deeper understanding. As both learning 
and diagnostic tools, concept maps offer valuable insight into students' thinking. 
 
However, evaluating concept maps is time-consuming. With the advancement of artificial 
intelligence (AI), automated tools now offer potential solutions. AI can interpret user input 
and images, raising the question: can it reliably assess student-generated concept maps and 
provide individualized feedback? 
 
Recent studies show strong alignment between AI and human scoring of concept maps. For 
example, Bleckmann and Friege (2023) found that AI scored student maps with 80% 
accuracy and a Cohen’s κ of 0.73—comparable to human raters. Medical education research 
supports AI validity as well. Ho et al. (2018) found strong correlations between AI-scored 
maps and manually graded essay questions, highlighting the efficiency and consistency of 
automated assessment. With proper training and frameworks, AI can score concept maps with 
a reliability close to human judgment (Bleckmann & Friege, 2023; Ho et al., 2018). Yet, 
challenges remain. Hubal et al. (2020) noted that while AI captured conceptual complexity, it 
struggled with evaluating organizational structure, suggesting a need for further refinement. 
As AI evolves, scoring accuracy continues to improve, narrowing the gap with human 
evaluation. This progress opens promising possibilities at the intersection of educational 
assessment and AI. 
 
Building upon the preceding discussion, this study seeks to investigate the following research 
questions: 

1. What are the processes involved in establishing cross-school collaboration to explore 
water resource issues in the context of the Sustainable Development Goals (SDGs)? 



2. In what ways can artificial intelligence (AI) support teachers in assessing and 
analyzing student-generated concept maps, and what are the critical stages of this 
process? 

3. How do assessment outcomes differ between AI-based evaluations and those 
conducted by human teachers? 

 
Research Design 

 
Outdoor Education 
 
A substantial body of research has demonstrated that when students engage in outdoor 
learning experiences facilitated by teachers, they tend to exhibit enhanced development 
across cognitive, physical, social, and emotional domains. Utilizing natural environments as 
an extension of the indoor classroom has been shown to improve both academic performance 
and lifelong learning behaviors (Ruether, 2018). Compared to traditional, monotonous 
classroom instruction, outdoor environments foster greater student engagement and active 
participation (Dettweiler et al., 2015). Furthermore, students involved in outdoor educational 
activities not only achieve more enduring learning outcomes but also benefit from 
interdisciplinary learning experiences gained through direct interaction with the natural world 
(Becker et al., 2017). 
 
According to a comprehensive study by Ruether (2018), outdoor education typically 
encompasses the following six characteristics: 

1. It enables students to form meaningful connections between acquired knowledge and 
real-life contexts; 

2. It supports learning through multisensory experiences; 
3. It enhances students' intrinsic motivation to learn; 
4. It provides more opportunities for peer interaction through physical movement; 
5. It facilitates the development of students' social skills; 
6. It contributes to behavioral improvements, particularly among students with 

attention-related difficulties, such as those with ADHD. 
 
For students residing in urban environments, opportunities to engage with untouched natural 
settings are often limited. Therefore, educators can consider utilizing semi-natural 
environments, such as riversides, as alternative outdoor learning spaces. Such settings are 
likely to elicit distinct and potentially enhanced learning outcomes from students 
participating in these courses. 
 
Concept Maps in Education (Concept Maps and Novak's Scoring Standards) 
 
Concept maps are graphical tools used to organize and represent knowledge, emphasizing the 
relationships between different concepts. They are particularly effective in science education, 
where complex ideas and their interconnections are central to learning. Novak's scoring 
standards provide a structured approach to evaluating concept maps, focusing on the 
hierarchy of concepts, the validity of links, and the overall structure of the map. These 
standards have been widely adopted in educational research and practice, offering a reliable 
method for assessing the depth and accuracy of conceptual understanding (Adlaon, 2012; 
Lubberts, 2009; Novak & Gowin, 1984). 
 



The scoring criteria for concept maps are mainly based on the N-G scoring method proposed 
by scholars Novak and Gowin (1984), which is based on Ausubel's learning theory and 
divides concept maps (Figure 1) into four items for scoring (Ausubel, 1968). These four items 
and their scoring criteria are listed below: 
 
Figure 1 
Concept Maps and Novak's Scoring Standards 

 
Relationships or Propositions 
 
One mark is awarded for each valid proposition (i.e. a meaningful link between two 
concepts). No marks will be awarded or deducted for vague or incorrect links, as shown in 
Figure 2. 
 
Figure 2 
Relationships or Propositions of Concept Map 



Hierarchy 
 
The concept map is presented in a hierarchical format, with 5 points given for each valid 
hierarchical relationship. The hierarchical relationships indicate the organization of the 
concept, as shown in Figure 3. 
 
Figure 3 
Hierarchy of Concept Map 

 
Cross-Links 
 
Ten marks were awarded for effective cross-linking, indicating that students were able to 
make meaningful connections between different areas of knowledge and demonstrate creative 
thinking. If the cross-linking is effective but the conceptual propositions cannot be combined, 
2 marks will be awarded. 
 
Example 
 
The student explains the meaning of the concept through a specific event or object, awarding 
1 mark for an effective example. 
 
In addition, there are other scoring methods such as Goldsmith and Johnson's Closeness index 
scoring method, which is assessed by comparing the structural similarity of the students' 
concept maps to the experts' concept maps. 
 
Concept Map Scoring Formula 
 
Total Score = (5 × number of valid strata) + (1 × number of valid propositions) + (10 × 
number of valid cross-links) + (1 × number of valid examples). 
 
 



Benefits of Concept Maps 
 
Visual organization of knowledge: Concept maps help students understand the relationships 
between concepts by presenting complex knowledge in a visual way. 
 
Promoting Creative Thinking: Through cross-linking, students are able to make connections 
between different areas of knowledge and develop creative thinking skills. 
 
Assessing Learning Outcomes: Concept maps can be used as a tool to assess student learning 
outcomes, reflecting students' knowledge organization and understanding. 
 
AI in Educational Assessment 
 
The advent of AI has revolutionized various aspects of education, including assessment. 
AI-powered tools are increasingly being used to automate grading, provide personalized 
feedback, and enhance the efficiency of educational evaluations. In the context of concept 
mapping, AI can potentially analyze the structure and content of maps, offering objective and 
consistent scoring based on predefined criteria. However, the consistency of AI-generated 
scores with those of human teachers remains a critical area of investigation (Ivanova et al., 
2024; Ogunsakin, 2024; Owan et al., 2023). 
 
The Prompt Framework in AI Research 
 
The Prompt Framework refers to a structured approach used in AI systems to generate 
responses to specific tasks. In the context of educational assessment, this framework can be 
adapted to guide AI systems in evaluating concept maps. By incorporating Novak's scoring 
standards into the Prompt Framework, AI systems can be trained to assess concept maps with 
a high degree of accuracy and consistency. This integration has the potential to address some 
of the challenges associated with manual scoring, such as subjectivity and time constraints 
(Anohina & Grundspenkis, 2007; Ivanova et al., 2024). 
 
Score Consistency Between AI Evaluation and Human Teachers 
 
The consistency of scores between AI evaluation systems and human teachers is a crucial 
factor in the adoption of AI in educational assessment. Studies have shown that AI systems 
can achieve high levels of accuracy in scoring concept maps, particularly when trained on 
large datasets of human-scored maps. However, the consistency of AI-generated scores with 
those of human teachers can vary depending on the complexity of the maps and the specific 
criteria used for evaluation. For instance, AI systems may struggle with assessing the 
hierarchical structure of concepts, a key aspect of Novak's scoring standards, leading to 
discrepancies in scores (Anohina-Naumeca et al., 2010; Pramjeeth & Ramgovind, 2024; 
Zhao, 2024). 
 

Research Design 
 
Participants 
 
In this study, a purposive sampling method was used to select two classes in each of the two 
junior high schools in Taipei City and New Taipei City, two administrative districts in 
Taiwan, for the teaching experiment (n = 110). Four classes with a total of 110 students were 



selected using the intentional sampling method with eighth-grade students. Students were 
given an instructional design that included a concept map and a text on water pollution. There 
was no significant difference in the pre-test scores of the four classes in their respective 
schools compared to their science scores in the previous semester. 
 
Research Tools: AI Platform Usage 
 
Claude 
 
After testing on various AI platforms, Claude can currently read the image files, but not the 
images in the PDF. 
 
NotebookLM 
 
It is currently the only AI interface that can read PDFs of students' hand-drawn conceptual 
maps. 
 
AI-Scored Content Checking 
 
A scoring consistency test is conducted, and the prompts are then analyzed and optimized by 
natural science subject matter experts to determine the content of the scores that meets the 
needs of the subject matter. 
 
We found that the only mainstream AIs that can read handwritten and hand-drawn messages 
in pictures and perform scoring accurately during the study period are Claude and 
notebooklm, but Claude can only read picture files. 
 
However, the large number of images in the scanned PDF files can be easily read and 
accurately scored by notebooklm. So we chose notebooklm to build a fast and convenient AI 
personalized scoring system. 
 
Verify AI Scoring Consistency 
 
We were concerned about the impact of version updates and the time gap between ratings on 
the consistency of ratings, so we did a ratings consistency test, and the result was that after a 
week both the total score and the sub-items were perfectly consistent. 
 
Prompt Framework Optimization 
 
In the part of prompt Framework optimization, we went through six iterative optimization 
processes and finally reached a relatively stable state that is closer to the scoring of human 
teachers. It is mainly divided into four parts: roles, tasks, steps, and rules. Among them, the 
rules part is the focus of optimization and can correct more problems, as shown in Figure 4. 
 
 
 
 
 
 
 



Figure 4 
Prompt Framework Optimization 

 
Differentiated Feedback 
 
The section on differentiated feedback is outlined below. The red box on the left side of the 
picture is about how to ask AI to give feedback in a tactful way and it must be feedback that 
is appropriate for the students. The red square on the right is the personalized feedback 
message given by AI to give students positive reinforcement. 
 
Data Collection Methods 
 
In this study, students were provided with a text article discussing the issue of water pollution 
in Taiwan. The content covered key aspects such as the sources of pollution, relevant 
environmental regulations, the proportion of various pollutants, and the underlying causes 
associated with each source. Furthermore, the article introduced the River Pollution Index 
(RPI) as a framework for evaluating pollution levels, using the Bei-gang River as a case study. 
Following the reading, students were required to construct concept maps that visually 
represented the main ideas and relationships presented in the text. 
 

Results 
 
Grading Consistency Between Human Teachers and AI 
 
From the results, three of the four classes in this study reached a "high degree of consistency", 
while the class of TYK 804 had a large difference in the scores between the AI and human 
teachers; therefore, it is an important reference for the optimization of cues in the following 
section. 
 
This indicates a fair level of consistency, suggesting that the two grading mechanisms have 
limited consistency in classifying students' scores. (Table 1) 
 
 



Table 1 
Grading Consistency Between Human Teachers and AI 

 
Teachers reviewing the concept maps drawn by students will give appropriate differentiated 
feedback on each section (relationships, hierarchy, examples, cross-links), but the time cost 
of reviewing is enormous. 
 
Comparative Analysis of AI and Human Teachers 
 
Relationship Score 
 
Human teachers averaged 10.44 and AI averaged 10.89, a relatively small difference. 
 
The correlation coefficient of 0.90 indicates a highly consistent trend in the relationship score 
ratings between AI and human teachers. 
 
t examined (t = -1.19, p = 0.25), indicating that there was no statistically significant 
difference between the relationship scores of the human teachers and the AI. 
 
Class Score 
 
Human teachers had the same mean (18.33) and the same standard deviation as AI. 
 
The correlation coefficient of 0.96 indicates that the trend of AI and human teachers' rank 
score ratings is very consistent. 
 
The t-test (t = 0.00, p = 1.00) shows that they are identical with no significant difference. 
 
Example Score 
 
The mean value of both human teachers and AI is 0.22, and the correlation coefficient is 1.00, 
which means that the AI and human teachers' ratings are identical. 
 
The t-test could not be calculated, probably because of the distribution of the data, but there is 
no significant difference between the two in terms of mean and correlation. 
 
Crosslink Fraction 
 
Human teachers averaged 5.00, AI averaged 3.89, and AI was slightly lower. 
 



The correlation coefficient of 0.89 indicates that the trend in cross-linking scores between AI 
and human teachers remains fairly consistent. 
 
t test (t = 1.46, p = 0.16), indicating no statistically significant difference between the two. 
(Table 2) 
 
Table 2 
Comparison of Human and AI Scores Across Different Score Types 
Score Type Human 

Mean 
AI Mean Correlation 

Coefficient 
t-test (t, p) Summary 

Relationship 
Score 

10.44 10.89 0.90 t = -1.19  
p = 0.25 

No significant 
difference 

Class Score 18.33 18.33 0.96 t = 0.00  
p = 1.00 

Identical ratings with 
consistent variability 

Example 
Score 

0.22 0.22 1.00 Not 
calculated 

Identical ratings 

Crosslink 
Fraction 

5.00 3.89 0.89 t = 1.46  
p = 0.16 

No significant 
difference 

 
Statistics of Students’ Concept Map Performance 
 
Overall, students from TYK outperformed Nangang students in terms of total conceptual map 
scores, especially in the relationship and example categories. This suggests that TYK students 
tended to provide more examples and achieved higher overall coherence in their maps. 
However, Nangang students displayed more cross-linking among concepts, indicating 
stronger connections between different parts of their conceptual maps. (Table 3) 
 
Table 3 
Statistics of Students’ Concept Map Performance 

 
 

 
 



Discussion 
 
Potential Influencing Factors 
 
1. Instructional Strategies: Variations in teaching methods between Nan-Gang and TYK 

may influence how students construct concept maps. For instance, the pedagogical 
approach in Nan-Gang may emphasize making inter-conceptual connections, while TYK 
may prioritize the development of hierarchical structures. 

2. Student Learning Backgrounds: Differences in students’ prior knowledge of subject 
content may also impact concept map performance. TYK students may demonstrate 
stronger understanding of hierarchical relationships, resulting in higher scores in related 
categories. Conversely, Nan-Gang students may be more adept at identifying 
cross-conceptual links, thereby excelling in cross-linking assessments. 

3. Scoring Rubrics and Complexity: Discrepancies in scoring standards or students’ varied 
interpretations of how to construct concept maps may contribute to significant differences 
in performance. Further refinement of rubric clarity is necessary to address such 
inconsistencies. 
 

Conclusion 
 

1. Frequent updates by AI software providers present a key challenge for maintaining 
consistent scoring when using AI for assessment and feedback. 

2. Even in the absence of such updates, temporal variations in AI scoring suggest that model 
stability must be ensured—an issue not exclusive to AI, as human raters also exhibit 
variation over time. 

3. Evaluation results revealed a limited understanding of the concept of “hierarchy” among 
both AI systems and students. To address this, students should receive clearer definitions, 
illustrative examples, and additional practice before generating concept maps. The 
hierarchical dimension is particularly suitable for analyzing structured scientific texts. 

4. AI systems sometimes misclassify concept relationships as examples, leading to slight 
scoring inconsistencies. 

5. The current assessment approach measures quantity but lacks the ability to weight scores 
based on concept importance. For instance, in the Beigang River article, livestock 
wastewater is heavily emphasized. Students accurately representing this key issue should 
be awarded higher scores, but current scoring methods cannot account for such qualitative 
distinctions. 

6. Complex conceptual maps can present interpretive challenges for teachers, often 
requiring subjective inference. In such cases, AI-assisted scoring can help identify the 
underlying logic and support scoring consistency. 

7. While AI effectively identifies handwritten concepts and even recognizes spelling errors, 
its performance decreases significantly when faced with illegible handwriting. 
Misinterpretation of handwritten terms remains a challenge—particularly in languages 
like Chinese—highlighting the current limitations of AI compared to human evaluators. 
 

Suggestions and Future Improvements 
 
1. Enhancing the AI Scoring System 

 
AI scoring should incorporate weighted adjustments based on human grading patterns. 
For example: 



o Relationships: 40% 
o Hierarchy: 30% 
o Examples: 20% 
o Cross-links: 10% 

 
A hybrid scoring model could be developed, allowing AI to learn from historical teacher 
grading data and better predict scores rather than relying solely on additive calculations. 
 

2. Aligning AI with Human Scoring Standards 
 
Regarding standardized scoring criteria, the limited influence of example scores and 
cross-links may stem from ambiguities in current guidelines. These should be refined to 
enhance scoring reliability. Additionally, prompt optimization is essential to align 
AI-generated feedback more closely with human ratings. The inclusion of “cross-linking” 
in scoring should also be revisited, as current AI systems often fail to recognize this 
element—perhaps due to its underrepresentation in human instruction. 
 

Final Reflections 
 
• Human evaluators demonstrate greater flexibility, particularly in assessing relationships 

and hierarchical structures. 
• In contrast, current AI models apply equal weighting across all subcategories, resulting in 

overly mechanical assessments. 
• Optimizing AI scoring to reflect human grading logic will enhance consistency and trust 

in automated systems. 
• Human raters can likewise benefit from more standardized rubrics to ensure fairness and 

coherence in evaluations. 
 
These findings provide valuable insights for improving AI-based scoring models and 
enhancing teacher assessment practices. Moreover, engaging students in outdoor exploration 
and direct interaction with natural environments fosters greater sensitivity toward 
sustainability issues. When students care deeply about the environment, teachers can more 
effectively guide them through issue-based instruction. Combined with AI-assisted feedback, 
this approach supports deeper learning and a more comprehensive educational experience. 
 



References 
 
Adlaon, R. (2012). Assessing effectiveness of concept map as instructional tool in high school 

biology. Louisiana State University Libraries. 
https://doi.org/10.31390/gradschool_theses.2425 

 
Anohina, A., & Grundspenkis, J. (2007). A Concept Map Based Intelligent System for 

Adaptive Knowledge Assessment. Frontiers in Artificial Intelligence and 
Applications. 263–276. https://ebooks.iospress.nl/publication/3461 

 
Anohina-Naumeca, A., Strautmane, M., & Grundspenkis, J. (2010). Development of the 

scoring mechanism for the concept map based intelligent knowledge assessment 
system. Proceedings of the 11th International Conference on Computer Systems and 
Technologies and Workshop for PhD Students in Computing on International 
Conference on Computer Systems and Technologies. 376–381. 
https://doi.org/10.1145/1839379.1839446 

 
Ausubel, D. P. (1968). Educational psychology: A cognitive view. Holt, Rinehart & Winston. 
 
Becker, C., Lauterbach, G., Spengler, S., Dettweiler, U., & Mess, F. (2017). Effects of 

Regular Classes in Outdoor Education Settings: A systematic review on students' 
learning, social and health dimensions. International Journal of Environmental 
Research and Public Health, 14(5), 485. https://doi.org/10.3390/ijerph14050485 

 
Bleckmann, T., & Friege, G. (2023). Concept maps for formative assessment: Creation and 

implementation of an automatic and intelligent evaluation method. Knowledge 
Management & E-Learning, 15(3), 433–447. 
https://doi.org/10.34105/j.kmel.2023.15.025 

 
Dettweiler, U., Ünlü, A., Lauterbach, G., Becker, C., & Gschrey, B. (2015). Investigating the 

motivational behavior of pupils during outdoor science teaching within 
self-determination theory. Frontiers in Psychology, 6, 125. 
https://doi.org/10.3389/fpsyg.2015.00125 

 
Ho, V. W., Harris, P. G., Kumar, R. K., & Velan, G. M. (2018). Knowledge maps: A tool for 

online assessment with automated feedback. Medical Education Online, 23(1), 
1457394. https://doi.org/10.1080/10872981.2018.1457394 

 
Hubal, R., Bobbitt, L., Garfinkle, S., Harris, S. C., Powell, B. D., Oxley, M. S., Anksorus, H. 

N., & Chen, K. Y. (2020). Testing of a Program to Automatically Analyze Students' 
Concept Maps. Pharmacy (Basel, Switzerland), 8(4), 209. 
https://doi.org/10.3390/pharmacy8040209 

 
Ivanova, M., Ivanova, T., & Terzieva, V. (2024). Automating Assessment within Intelligent 

Education. 2024 IEEE 12th International Conference on Intelligent Systems (IS), 
Varna, Bulgaria, 2024, 1-6. https://doi.org/10.1109/IS61756.2024.10705174 

 
Liefländer, A. K., Froehlich, G., Bogner, F. X., & Schultz, P. W. (2013). Promoting 

connectedness with nature through environmental education. Environmental 
Education Research, 19(3), 370–384. https://doi.org/10.1080/13504622.2012.697545 



Lubberts, P. T. (2009). Concept Maps in the Science Classroom. Mathematical and 
Computing Sciences Masters. Paper 1. 
https://fisherpub.sjfc.edu/cgi/viewcontent.cgi?article=1000&context=mathcs_etd_mas
ters 

 
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge University Press. 
 
Ogunsakin, I. (2024). Unlocking The Potential of Artificial Intelligence: A New Paradigm for 

Assessment in 21st Century Education. International Journal of Research in STEM 
Education, 6(2), 37–49. https://doi.org/10.33830/ijrse.v6i2.1698 

 
Owan, V. J., Abang, K. B., Idika, D. O., Etta, E. O., & Bassey, B. A. (2023). Exploring the 

potential of artificial intelligence tools in educational measurement and assessment. 
Eurasia Journal of Mathematics, Science and Technology Education, 19(8), em2307. 
https://doi.org/10.29333/ejmste/13428 

 
Pramjeeth, S., & Ramgovind, P. (2024). Reconceptualizing assessment design in the age of 

AI: Is it genuine or faux? New Directions for Teaching and Learning, 1–12. 
https://doi.org/10.1002/tl.20625 

 
Ruether, S. (2018). Barriers to Teachers' Use of Environmentally-Based Education in 

Outdoor Classrooms. Walden Dissertations and Doctoral Studies, 5776. 
https://scholarworks.waldenu.edu/dissertations/5776 

 
Zhao, C. (2024). AI-assisted assessment in higher education: A systematic review. Journal of 

Educational Technology and Innovation, 6(4). https://doi.org/10.61414/jeti.v6i4.209 
 
 
Contact email: jacky745@tykjh.ntpc.edu.tw 


