
Development of a Tool to Analyze Source Code Submitted by Novice Programmers and

Provide Learning Support Feedback With Comments

Tatsuyuki Takano, Kanto Gakuin University, Japan

Osamu Miyakawa, Tokyo Denki University, Japan

Takashi Kohama, Tokyo Denki University, Japan

The Asian Conference on Education & International Development 2023

Official Conference Proceedings

Abstract

Novice students make various mistakes in the process of learning computer programming. In

courses with more than 100 students, it is difficult to provide accurate and detailed feedback

regarding errors in the source code submitted for their assignments. Therefore, we created a

source code analyzer and developed a tool to provide detailed feedback to each student. It

performs unit tests with misspelled classes and method names. From the results, the tool

generates comments, such as "Let us check the method name" or "Let us check the execution

result.” The tool can generate an average of more than 8,000 Japanese characters per

assignment in an actual programming lecture with more than 100 students. In this study, we

report on the developed tool, its adaptation to an existing learning management system, and

its evaluation.

Keywords: Programming Education, Source Code Analyze, Learning Support Tools

iafor

The International Academic Forum

www.iafor.org

Introduction

Information and Communication Technology (ICT) is playing an increasingly important role

in everyday society. Therefore, software development is an important element in constructing

information systems, and the training of programming engineers necessary for software

development is key.

According to the IPA (Information-technology Promotion Agency of Japan. 2020), the

demand for IT personnel remains high, and the Ministry of Education, Culture, Sports,

Science, and Technology is promoting education that incorporates programming in

elementary, junior high, and high schools (Ministry of Education, Culture, Sports, Science,

and Technology. 2021).

Beginner programmers make various mistakes during the learning process. Understanding

programming requires practice, which includes making mistakes (Martin, R.C. 2008). It is

difficult for educators to identify errors properly when there are many learners.

Therefore, we developed a tool that can generate comments from student-submitted

programs, even if the program's method name is misspelled, and can even perform unit

testing. This tool is based on the core functionality of our previous system for real-time

evaluation of student programs during lectures (Shin Hasegawa, et al., 2011), which is

designed to be output in the form of an evaluation input to Manaba, the learning management

system (LMS) currently used for lectures at Kanto Gakuin University. The output of the

evaluation was designed to match the format of the evaluation input in Manaba. In this study,

we report the results of using the tool in a lecture attended by more than 100 students who are

beginner programmers and the results of feedback through comments to the students.

Development Tool Overview

The tools were developed in Java and Groovy, a dynamically typed scripting language that

runs on Java VM.

The tool uses student submissions, a configuration file of the source code evaluation method,

and the source code of the correct answers. The tool has a defined folder structure, and when

the tool is executed, the evaluation results are output as CSV, HTML, and XML files; the

CSV and XML files are used to read the evaluation result values, and the HTML file is used

by the instructor to view the evaluation results. The main evaluation parameters were

compilation, indentation, class definition, and unit testing.

Manaba allows student evaluations to be entered into an EXCEL file, which contains

columns for each student to enter evaluations and comments, and the tool generates a CSV

file from the CSV file of the evaluation results that can be pasted into the columns for each

student.

Folder and file organization

When a zip file is unzipped, there are three folders and three files:

⚫ answer folder ・・・ File that will be the correct answer to the execution result

⚫ check folder ・・・ File to set check items

⚫ Test folder: Folder with the teacher's name where student submissions are stored.

⚫ prettify.css prettify.js style.css ・・・ File for html, which is a view of scoring

results

The following folders exist in the tests folder:

⚫ mihon folder ・・・ Correct answer file (same file as "answer")

⚫ mini folder ・・・ Files of specific students extracted when creating the checklist

⚫ teacher folder ・・・ A folder that contains the student's submitted files

The mihon and mini folders were used only for setting up and adjusting the tools. The teacher

folder contained each student's folder and the files necessary for grading. The roles of each

folder are as follows:

⚫ reportlist.xls ・・・ Registration file to LMS

⚫ points.csv ・・・ Evaluation result file to be pasted into the registration file

⚫ teacher.html ・・・ File for viewing the results of scoring items

⚫ teacher_compile.txt ・・・ Dump file of compilation errors (option)

⚫ CreateMessage.groovy ・・・ Script to output points.csv (option)

Folder and file organization

Figure 1: Example of evaluation result file (points.csv).

To grade the scores, first open points.csv (Figure 1) and reportlist.xls (Figure 2) were used in

Microsoft Excel. points.csv opens as follows: Column A contains the student ID number, and

columns B–D are the three columns for pasting. Copy these three columns and paste them

into columns J to L of reportlist.xls, and paste the total score, evaluation, and critique

Sachiko

according to the "Value" option. (In Manaba, if there is no total score, the evaluation is

displayed in the Grades column).

Figure 2: Example of copying and pasting an evaluation into a registration file (reportlist.xls).

The faculty member checks if the rows with the "Not submitted" column are evaluated as

"Not submitted.” This is a simple method for verifying whether the number of lines output by

the tool is correct. After completing the check for "Not Submitted,” the teacher should refer

to the teacher.html file and adjust the evaluation and critique. This was done to allow the

graders to adjust for unexpected patterns in the tool's submission and grading criteria.

Viewing evaluation results via HTML file

The results of the submissions, execution results, and graded items can be viewed by opening

a teacher.html file in a browser. The results for each student are arranged according to the

number of students in the single-page structure.

Figure 3: Example of viewing an evaluation in HTML.

Using Figure 3 as an example, "student022@fstudent022" is the name of a student folder.

The files under "list" are the files used by the grading tool. Files that do not contain a ". java"

or ". txt" extensions are not displayed. The "Simple Check List" shows the true/false status of

the check items for each file as true and false. The files with poor results are shown in red.

Critical text was generated based on these judgment results, but some items were not used.

Some items were displayed in red, and there were cases in which the evaluation was

acceptable, even if the background was not entirely white.

Figure 4: Example of display of submitted source code and its evaluation.

Next, in the source code section of the submission, "Folder name Issue file name (name of

the submitted file)" is displayed (Figure 4), and the contents of the submission are displayed

below it with line numbers. The file name inside the parentheses is the file of the submission;

therefore, in this case, we know that the submission was made with the lower-case name

car.java. The filename difference was true for the file "file:name:fuzzy match" indicating that

the tool detected a misspelling of the filename. In this case, the generated comment is "There

is a misspelling in the filename of the Car class."

Figure 5 shows an example display for each item. The items are roughly classified into

"File," "Compile," "Indent," "Class Definition," "Grammar," and "Unit Test." The value for

"Indent" indicates the indentation width using one-byte spaces. In the case of tabs, the value

is 1.

Figure 5: Example of display of each evaluation item.

Class Definition" is a check item for the specifications that form the class framework. The

state refers to the field in the class, and behavior refers to the methods and concepts in the

class. The results of comparing the type, variable name, etc., with the correct file are

displayed.

The unit test compared the execution results with the correct answers. For methods that

returned a value, the value for the test was entered as an argument, and the results were

displayed to determine whether the results matched. Below "Correct:" is the result of the

correct file, and below "Answer:" is the unit test result of the submitted file.

Figure 6: Example of unit test evaluation results.

Classes with a main method have a "Grammar" item, and "Unit Tests" also have a

"Similarity" indicator. The "Grammar" item uses regular expressions to check whether the

program is written according to the declaration method and flowchart of the variables in the

main method described in the assignment.

As shown in Figure 6, the "unit test" of a method in the standard output displays the

"similarity" below the correct answer and solution. The similarity is used to allow for

ambiguity in judging the presence or absence of white space or double-byte and single-byte

characters when questions are submitted on paper. A judgment of 1.0 was regarded as 100%

agreement, and the other values are displayed in red. However, because a separate threshold

is set for the results at point csv, even a false judgment may result in a pass. The

corresponding full-width characters are changed to half-width characters, and the similarity is

calculated by the "edit distance of strings (Levenshtein distance)" for strings that exclude all

but the necessary white space.

The "unit test" in the main method isolates a specific line for each role of the output (Figure

7) and reflects the judgment in the critique.

Figure 7: Example of multiple unit test results.

The unit test uses three times the width of the other items and a larger font size to make it

easier to identify differences in the text.

Use in lectures by its tools

The tool was used in a lecture for beginner programmers at Kanto Gakuin University's

Faculty of Science and Technology to evaluate assignments and provide feedback through

generated comments. The lecture was given to 140 students, most of whom were first-year

university students. The content of the lecture was based on the fundamentals of structural

programming in Java and did not include object-oriented programming.

Next, we discuss the comments received while evaluating the submitted source code.

Figure 8: Example of Correct Source Code.

Figure 9: Example of submitted incorrect source code.

For example, if there is a submitted source code (Figure 8) for this correct answer (Figure 9),

feedback with comments such as the following will be generated by the tool.

We have received your assignment.

The following points will be noticed here, please refer to them for future study.

Check the class name of the Kadai1201 class.

Check the main method of the Kadai1201 class for "displaying input from the

keyboard.

Let us check the "Display of the minimum value" in the main method of Kadai1201

class.

Note that the indentation of Kadai1201 class is not proper.

The argument of the main method of Kadai1201 class does not seem to be String[]

args.

Table 1 shows the number of characters in Japanese used for comments on each assignment

and the number of submissions.

Table 1: Number of both words and submissions of comments in each assignment.

Assignment

Number

Number of characters (in Japanese) for

comments to the entire submitter
Number of submitters

02-1 5392 116

02-2 6966 113

03-1 6534 115

03-2 13750 112

04-1 8958 113

05-1 11663 108

05-2 13649 102

05-3 6437 97

06-1 6441 114

07-1 7697 117

10-1 8091 109

10-2 8137 105

11-1 6670 108

12-1 8144 111

12-2 7454 97

13-1 10961 105

Sum 136944 1742

Ave. 8559 108.875

The feedback from the evaluations and comments was checked by the lecturer in charge of

each lecture, and the evaluations were returned to the students via the LMS. There were only

a few cases in which the comments made by the tool were incorrect or corrected.

Evaluation by questionnaire to students when using the tool

A questionnaire was sent to the students at the end of the lecture period to evaluate their

assessment of assignments using the tool and provide feedback through comments. Eighty-

three responses were received.

The results of each question and answer were as follows.

Q1. How accurate are your remarks?

⚫ Very accurate 36% (30)

⚫ Generally accurate 41% (34)

⚫ Fairly accurate 20% (17)

⚫ Generally inaccurate 2% (2)

⚫ Inaccurate 0% (0)

Q2. How detailed were the comments?

⚫ More detailed 18% (15)

⚫ A little finer 24% (20)

⚫ Normal 55% (46)

⚫ A little rougher 1% (1)

⚫ More rough 1% (1)

Q3. How is the readability of the points you made?

⚫ Very easy to read 37% (31)

⚫ Somewhat easy to read 23% (19)

⚫ Normal 28% (23)

⚫ Slightly difficult to read 11% (9)

⚫ Difficult to read 1% (1)

Q4. Is the evaluation criteria consistent and stable throughout each assignment?

⚫ Very stable 39% (32)

⚫ Somewhat stable 33% (27)

⚫ Cannot say either 25% (21)

⚫ Slightly unstable 4% (3)

⚫ Unstable 0% (0)

Q5. Are the points you have made useful for this study?

⚫ Very useful 37% (31)

⚫ Somewhat useful 39% (32)

⚫ Cannot say either way 18% (15)

⚫ Somewhat unhelpful 6% (5)

⚫ Not useful 0% (0)

Q6. Would you like to use a programming learning site with this type of evaluation system in

the future?

⚫ I would like to use it by all means 30% (25)

⚫ Somewhat would like to use it 46% (38)

⚫ Cannot say either way 22% (18)

⚫ Somewhat unwilling to use 2% (2)

⚫ I do not want to use it 0% (0)

The results of student evaluations using the questionnaire were positive. The questionnaire

also indicated many requests for a learning site separate from the feedback method through

the LMS.

Future Outlook

The results of the survey showed that there was a high demand for a learning site, and a

system was being developed to make the developed tools available via a web browser.

Generally, a Java program requires an execution environment to be installed on a PC or

another device to run and evaluate it. However, Doppio (Vilk, John. et el. 2014), which runs

on a web browser, enables program execution and evaluation using only a web browser

without installing an execution environment on a PC. Currently, we are developing a

prototype tool for the simple evaluation of submitted source code using only a web browser.

Conclusions

In this study, we developed a tool to evaluate the source code submitted by students for

assignments, using the core functionality of a previous program evaluation system. The tool

tests the submitted source code for spelling errors and automatically generates comments for

students based on the evaluation results.

The tool has been used in actual assignments for beginner programmers’ lectures and has

provided feedback with comments of more than 8,000 characters in Japanese for an average

of more than 100 submissions each time. The tool was also evaluated using a questionnaire

administered to students after the lecture period, and no major problems were found in the

comments generated by the tool.

In the future, we will develop an environment in which the tool can be run using only a web

browser such that the results of the tool can be used more easily.

Acknowledgements

This study was supported by JSPS KAKENHI (grant number: JP21K02809).

References

Apache Software Foundation. Groovy. https://groovy-lang.org/

Asahi Net, Inc. manaba. https://manaba.jp/

Information-technology Promotion Agency, Japan. White Paper on IT Human Resources

2020. https://www.ipa.go.jp/archive/publish/wp-jinzai.html

Ministry of Education, Culture, Sports, Science, and Technology. Reiwa 3 Annual White

Paper of the Ministry of Education, Culture, Sports, Science and Technology.

https://www.mext.go.jp/b_menu/hakusho/html/hpab202001/1420041_00010.htm

Martin, R.C. (2008). Clean Code: A Handbook of Software Craftsmanship. 1st edition.

Prentice Hall.

Shin Hasegawa, et al. (2011). A Real-time Instruction Support System for Introduction to

Computer Programming Education. Processing Society of Japan.

Vilk, John. at el.(2014). Doppio: Breaking the Browser Language Barrier. SIGPLAN Not. 49,

6, p.508–518. ACM.

Contact email: takano@kanto-gakuin.ac.jp

