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Abstract 

AI-enabled systems offering personalized learning pathways or options are gaining 

imminence, showing immense potential to meet diverse learners’ needs on a more practical 

scale. In this work, we piloted a learning resource that offers personalized learning pathways 

(or LeaP), powered by AI technology. The efficacy of the learning tool was evaluated using a 

skills test in a freshman statistics course. The results largely replicated what was found in the 

literature. For learners who used the resource, levels of engagement were not dependent on 

prior ability measured by past-semester GPA performance. The greatest difference in test 

scores was seen in the test task which the LeaP unit modelled after, with significant 

differences between learners who engaged with LeaP deeply versus those who did not 

attempt the unit at all. At-risk learners had poorer engagement levels and test performance 

compared to non-at-risk peers, which warrants a closer look at how intelligent tutoring 

systems (ITS) should be designed to meet their needs in online learning environments. 

Suggestions for future implementation and research were also proposed. 
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1. Introduction 

 

The COVID-19 pandemic has left an indelible mark on the delivery of traditional education 

on a global scale. The rapid rise of Artificial Intelligence (AI) technology is gaining traction 

in the delivery of a personalized learning experience that adapts to the specific needs of the 

learners (Pantelimon et al., 2021). Its broad application in educational settings has also been 

driven by technological advances, resulting in improved productivity and efficiency 

(Chassignol et al., 2018).  

 

1.1 ITS and AI 

 

Intelligent tutoring systems (ITS) and AI are the two key pillars that support just-in-time, 

adaptive learning in an online learning space. ITS can be seen as an antecedent to AI 

technology; both aim to inform instructors of learners’ behaviors and interactions in an online 

learning environment. As described by Freedman et al. (2000), ITS is a computer system that 

provides personalized instruction and feedback without the intervention of a human tutor. ITS 

is a powerful educational tool that can be customized and integrated into learning systems 

and relies on computer programming to enhance the learning experience with tailored 

lessons. With the advent of technology, ITS has evolved from the traditional, rigid computer-

aided instruction models associated with hard-coded links and has been under development 

for decades as Graesser et al. (2018) noted in their research. With ITS, customized instruction 

may be delivered to diverse learners at scale, achieving the benefits and effects of one-on-one 

coaching to improve academic performance (Bloom, 1984). 

 

AI can be seen as the undergirding technology to augment ITS functions. Unlike ITS, where 

the learning paths are more or less hard-coded and static, AI revs up the backend technology 

to enhance the linkage and communication between the learner and the learning content by 

optimizing the four main components of the learning system: the domain knowledge, 

learner’s current knowledge level, pedagogical or instructional measures (such as assessment) 

and the user interface (Pappas & Drigas, 2016; Pipitone et al., 2012). The integration and 

synchronization of these components is the cornerstone of AI-enabled tutoring systems and is 

pivotal in delivering customized instruction to meet diverse learners’ needs.  

 

1.2 Learning Outcomes and Engagement in Adaptive Learning Environments 

 

ITS, whether AI-enabled or otherwise, have been experimented with in the teaching and 

learning of STEM subjects such as mathematics (Bang et al., 2023; Bartelet et al., 2016; Beal 

et al., 2010; Eryılmaz & Adabashi, 2020) and even in non-STEM domains such as sports and 

dance or in business courses (Ashwin et al., 2023; White, 2020). Positive learning outcomes 

were noted in terms of improvement in assessment scores or user satisfaction levels (Bang et 

al., 2023; Bartelet et al., 2016; Beal et al., 2010, Eryılmaz & Adabashi, 2020; White, 2020). 

 

For at-risk learners, defined as those with poor academic performance and more likely to 

drop out of the course (Repetto, 2018, p. 163), an online learning environment seemingly 

affords a higher level of learner autonomy, control, and pace to their advantage. With AI-

enabled self-study tools, some work reported positive outcomes with low attainment students. 

For example, Bang et al. (2023) reported that the use of an adaptive learning app for 

mathematics produced the greatest learning gains in assessment tasks for learners from at-risk 

socio-economic groups. Bartelet et al. (2016) also reported their mathematics ITS optional 

homework tool produced pre-post gains in all levels of learning ability, with the low 



 

attainment learners benefitting more compared to the middle and high-level learners. The 

effects of more practice in the ITS environment (or interaction) on test gains were seen 

mainly in easier homework topics. Similar, Beal et al. (2010) found that learning gains were 

the most prominent in learners with the weakest initial mathematics aptitude, and learners 

who did more ITS sessions improved more than learners who accessed less of it. 

 

1.3 Research Questions 

 

Against the research, the current study aims to answer the following research questions 

(RQs): 

1. What are the differences, if any, in learner engagement of an AI-enabled tool that offers 

personalized learning pathways (thereafter called LeaP), amongst learners of varying 

aptitudes in a freshman statistics course? 

2. What is the impact of learner engagement in the LeaP tool on a statistics skills test? 

3. How did the academically challenged (or at-risk) learners engage with the tool and what 

was the impact on the skills test? 

2. Method 

 

2.1 Participants and Lesson Deployment 

 

The LeaP lesson unit was implemented in the fall semester of a foundational statistics course 

in October 2022. It was used as a revision package prior to a skills-based assessment, which 

required learners to compute and interpret various regression coefficient estimates using 

Excel data-analysis tool pack or the R software. The unit was embedded in a learning 

management system (LMS) and was accessible to learners in the second week of November, 

leading up to the assessment in the third week. The unit remained available until the mid-

semester term test as it was expected that some learners might use the tool for term test 

revision. To evaluate the impact of the tool, we removed late attempts submitted after the 

skills assessment week. The sample size decreased from an initial enrolment level of 484 to 

357 learners (see the section on “Variables and data analysis”). No ethics approval was 

needed as the unit was presented to all learners as a learning resource. 

 

2.2 Configuration of the LeaP Unit 

 

LeaP is an off-the-shelf adaptive learning tool that is integrated within the LMS. It has three 

main components: a mapping engine, a ranking engine and a recommendation engine. The 

mapping engine receives content assets and resources such as learning outcomes, learning 

materials (lecture notes in word or presentation files, video lectures), question pool and 

learner’s quiz results. The instructor needs to set up a .csv file format to capture the learning 

outcomes and question pool in pure text format, while ensuring a tight semantic association 

with the learning materials presented in the LMS. The backend semantic algorithm then ranks 

the extent of relatedness or relevancy between all the input assets. Lastly, the 

recommendation engine would combine the content relevancy and learners’ quiz 

performance to propose the most optimal materials to close learning gaps. LeaP is adaptive in 

nature as content relevancy would change each time a learner repeats a test question, ensuring 

that already-learned materials are not recommended.   

 



 

Download the "Student grades" dataset. Using Excel or R/R-studio, (i) Determine 

the equation of the multiple linear regression trend line to predict English marks 

from Writing and Reading marks. (ii) What is the R2 value? (iii) What does R2 tell 

you? 

The LeaP lesson pathway as experienced by the learner is summarized in Figure 1. Figures 3 

to 6 display the learner view in the LMS interface at various stages of the learning pathway.  

 

 

Figure 1: The learning journey in LeaP. 

 

The test bank for the diagnostic question (DQ), practice and post-study questions consisted of 

20 MCQs based on raw data from four datasets. Questions in the test bank mirrored the actual 

test task. The interface randomly presents one MCQ each time the learning unit is launched, 

whether at the DQ, practice question or post-study stage (a maximum of three DQs could be 

posed for a higher workload). The trigger to the recommended learning pathway is learner’s 

performance on the DQ, taken as an indication if the learning outcome was achieved. All 

interaction buttons are displayed within the same browser window so that the learner has full 

control in the whole process, whether to continue with the recommended resources, or 

proceed to take a practice or post-test question. A “thumbs up” or “thumbs down” button is 

also available for learners to recommend a learning resource depending on the perceived 

utility. This allows the AI backend to adjust the relevancy of the material. An example of a 

DQ is shown in Figure 2. Feedback is shown upon answer submission. 

 

 

 

 

 

 

Figure 2: Example of a DQ. 

 



 

 
Figure 3: The initial landing page with the DQ or pre-test question. 

 

 
Figure 4: Correct response to the DQ, with the option to exit or continue with study. 

 



 

 
Figure 5: Incorrect response to the DQ with feedback, recommended revision resources. 

 

 
Figure 6: A study path in-progress, with the marked-out boxes showing the “thumbs-

up/thumbs-down” buttons, practice and post-test question. 

 

2.3 Variables and Data Analysis 

 

The learner interaction data and the scores of the skills test were downloaded from the LMS. 

The number of trials or attempts in the pre-test, post-test and practice-test questions was used 

to define the LeaP engagement levels, as shown in Table 1. 

 

 

 



 

Level Description 

0 Did not do the LeaP lesson at all 

1 At least one attempt on pre-test but no post-test and practice question 

2 At least one attempt each of pre-test and practice test but no post-test 

3 At least one attempt each of pre-test and post-test but no practice test 

4 At least one attempt each of pre-test, post-test and practice test 

Table 1: Levels of LeaP engagement. 

 

Prior ability was operationalized as previous semester GPA, with a maximum possible best of 

4.0. The skills test comprised three questions out of a total of 20 points with one question 

similar to the LeaP pool. The other two questions tested concepts related to normality tests 

and correlation analysis. The scores were re-based to a total of 100%. Upon removing late 

LeaP attempts submitted after the skills test, we obtained a total of sample size of 357 

learners (223 LeaP submissions and 134 non-attempts). There were 15 students who repeated 

the course, whose GPAs were unknown and thus excluded from GPA analysis where needed. 

The repeat learners were included in the academically-challenged pool for RQ3. SPSS 

Version 26 was used for all data analysis.  

 

As the test scores (dependent variable) were non-normal, non-parametric tests such as the 

Kruskal-Wallis H-test and chi-square test were used for group differences. GPA was 

segregated into three levels, Low (0 to ≤2), Mid (2 to ≤3) and High (3 to ≤4). Where the 

assumption of a minimum expected cell counts of 5 was not fully met, the likelihood ratio 

was used as the chi-square statistic (Field, 2013, p. 724). The default significance level of .05 

was used, except when multiple comparisons were made to illuminate paired differences. 

Effect sizes for paired comparison is calculated by dividing the standardized Z-statistic by the 

square root of the total sample size (Pallant, 2016, p. 233). 

 

3. Results 

 

3.1  Relationship Between LeaP Engagement and GPA Levels 

 

Table 2 shows the GPA bands distributed across the engagement levels, excluding the 15 

repeat learners. GPA percentages in each level of engagement is shown in Figure 4. 

 

GPA Level 0 Level 1 Level 2 Level 3 Level 4 Total 

Low 19 2 0 3 1 25 

Mid 60 13 7 22 8 110 

High 46 26 13 91 31 207 

Total 125 41 20 116 40 342 

Table 2: Levels of LeaP engagement and GPA 

 

A chi-square analysis revealed a significant relationship in the levels of engagement and GPA 

levels (χ2 (8, 342) = 56.9, p = .00). As shown in Figure 7, the proportion of learners in the 

Low and Mid GPA bands decreased as LeaP engagement levels increased. The Cramér’s V 

value was .28, corresponding to a moderate effect size (Cramér’s V, n.d.). If the no-LeaP 

learners were excluded, the chi-square analysis did not show a significant relationship 

between LeaP engagement levels and GPA (χ2 (6, 217) = 6.24, p = .40). 



 

 
Figure 7: The proportion of GPA in each engagement level. 

 

3.2 Impact of LeaP Engagement on Test Scores 

 

Table 3 shows the mean, median, standard deviation and the Kruskal-Wallis H-test statistic of 

scores for each test question by engagement levels. As the level of engagement deepens, the 

score in Question 3 (which the LeaP unit models after) increased. 

 
 0 (None) 1 (Pre-test 

only) 

2 (Pre and 

Practice) 

3 (Pre and 

Post-test) 

4 (Pre, Post and 

Practice) 

Kruskal-

Wallis χ2 

(4,357) 

 M 

(SD) 

Md M (SD) Md M (SD) Md M 

(SD) 

Md M (SD) Md  p-

value 

Q1 45.58 

(38.83) 

50 45.64 

(37.42) 

50 60.83 

(32.23) 

66.67 64.41 

(36.29) 

70.83 64.43 

(36.61) 

83.33 23.36 .000 

Q2 38.06 

(38.50) 

50 50.57 

(37.54) 

50 62.50 

(35.82) 

50 64.30 

(38.23) 

50 67.07 

(33.74) 

50 35.31 .000 

Q3 28.21 

(31.47) 

20 46.36 

(34.96) 

45 53.25 

(39.94) 

65 67.58 

(28.52) 

70 79.15 

(22.10) 

85 96.78 .000 

Table 3: Descriptive statistics of test scores by question.  

M=mean (standard deviation in brackets), Md = Median. 

 

Figures 8 to 10 show boxplots of test scores in each question by engagement levels. As 10 

pair comparisons were made, a more stringent criterion value of .005 (0.05 ÷ 10) was used. 

Based on this adjusted significance level, only Level 0 and 3 (none-versus-pre and post-

group) had a significant difference in question 1. For question 2, besides Level 0 and 3, 

another pair produced significant differences in scores: the Level 0 and 4 (none-versus-pre, 

practice and post-test group). For question 3, the number of pairs with significant differences 

increased to three: Level 0 and 3 (none-versus-pre and post group), Level 0 and 4 (none-

versus-pre, practice and post-test group) and Level 1 and 4 (pre-versus-pre, practice and post-

test group). The effect sizes for the significant pair difference are presented in Table 4. 

 

 

 



 

Question Significant pair differences Standard test statistic (Z) Effect size 

 

Q1 

Level 0 and 3 -4.13 .22 

Q2 Level 0 and 3 -5.24 .28 

 Level 0 and 4 -4.13 .22 

Q3 Level 0 and 3 -8.19 .43 

 Level 0 and 4 -7.79 .41 

 Level 1 and 4 -4.11 .22 

Table 4: The effect sizes for significant pair differences per question. The effect size is 

calculated using the formula Z/ , where n = 357 (Pallant, 2016, p. 233). 

 

 
Figure 8: Boxplot for Excel test question 1. The dotted arrow represents significant 

differences between engagement levels. p-value = .000, adjusted for multiple comparisons. 

 

 
Figure 9: Boxplot for Excel test question 2. The dotted arrow represents significant 

differences between engagement levels. p-value = .000, adjusted for multiple comparisons. 



 

Figure 10: Boxplot for Excel test question 3. The dotted arrow represents significant 

differences between engagement levels. p-value = .000, adjusted for multiple comparisons. 

 

3.3 LeaP Engagement of Academically Challenged Learners and Test Scores 

 

For this analysis, the 15 learners (with missing GPA data) who repeated the course and the 

current-cohort learners with a GPA of 2 points or less were defined as at-risk. This formed a 

total pool of 40 at-risk learners, and 317 learners not at-risk. Table 5 summarizes the 

engagement counts between these two groups of learners and the mean, standard deviation 

and median scores. There is a significant relationship between academic status and 

engagement level, χ2 (4, 357) = 25.4, p = .00. The Cramér’s V effect size was .251. At-risk 

learners also performed significantly lower than their non-at-risk peers across all the three 

questions. For question 1, the Mann-Whitney U-statistic was 4,695 (Z = -2.72), p-value = 

.007. For question 2, U = 4,417 (Z = -3.28), p-value = .001 and for question 3, U = 3,278 (Z = 

-5.01), p-value = .000. As seen in Figure 11, there is a high proportion of at-risk learners who 

did not use the LeaP lesson unit to prepare for the skills test. Very few at-risk learners 

accomplished Level 4 engagement.  

 
GPA Level 

0 

Level 

1 

Level 

2 

Level 

3 

Level 

4 

Total Q1 Q2 Q3 

M (SD) Md M (SD) Md M (SD) Md 

Not 

at-risk 

106 39 20 113 39 317 56.76 

(37.66) 

58.3

3 

55.40 

(38.63) 

50.0

0 

54.05 

(35.27) 

60.00 

At-

risk 

28 5 0 5 2 40 39.58 

(39.03) 

37.5

0 

33.75 

(41.04) 

0.00 24.25 

(32.14) 

5.00 

Total 134 44 20 118 41 357       

Table 5: LeaP engagement levels and at-risk status and descriptive statistics by test question. 



 

 
Figure 11: proportion of engagement level between the at-risk and not at-risk learners. 

 

4. Discussion 

 

Our first RQ was to ascertain if there is a relationship between GPA and LeaP engagement 

level. The results showed that about 64% of the cohort (217 learners cumulated from Level 1 

to 4) had at least attempted the DQ. Amongst the 36.5% of learners who did not use the 

resource, about 63% of them had a GPA track record of lower than 3 points (Low and Mid 

categories combined), about 37% of the non-submitters being learners with a high GPA track 

record of 3 points and above. In contrast, for learners who at least use some LeaP, the 

proportion of strong-GPA attainment was much higher, reaching a maximum of 78.4% for 

level 3 learners with a GPA track record of at least 3 or better (see Figure 4). However, when 

the non-submitters are excluded, the amount of effort exerted did not differ by GPA track 

record, thus answering the first research question.  

 

The results also pointed to a polarization of test performance between the non-submitters and 

deeply engaged LeaP learner. For question 3, the task modelled after the actual assessment 

question, learners who did not access LeaP at all were worse off than learners who practiced 

the unit beyond just doing the DQ or pre-test. In fact, the largest effect sizes in the range of 

approximately 0.4 were observed in question 3 between the non-doers and those learners who 

diligently completed the pre-test, practice, or post-test. This illuminated the second research 

aim in that the more conscientious LeaP learners gained better outcomes. It is important to 

note that low GPA learners would also benefit if they spend effort and time to use the LeaP 

unit. Taken altogether, the results confirmed the evidence obtained in past studies (Bartelet et 

al., 2016; Beal et al., 2010; Eryılmaz & Adabashi, 2020), in that practicing tasks in an ITS or 

a learning environment that offers personalized learning routes has alleviating effects on 

academic performance. Low attainment learners also benefit if they choose to engage with 

the resource. 

 

The differences in engagement became very pronounced when at-risk learners were 

compared to non-at-risk learners. Not only did the at-risk learners performed poorly in all the 

three questions, a large proportion of at them (70%) did not use the LeaP tool at all, as 

compared to about a third of the non-at-risk students who likewise did not access LeaP. The 

proportion of learners engaged in deeper learning for the at-risk group was also very much 



 

lower than the corresponding levels for the non-at-risk group. There are two possible reasons 

for the poor levels of engagement exhibited by the at-risk learners. Firstly, due to the 

relatively short window of exposure (1 week), there was insufficient time for instructors to 

engage with learners, particularly the at-risk group (who might perhaps need more 

handholding and probing), to explain or communicate more clearly the goal of this 

instructional package. Secondly, there could be other needs troubling at-risk learners, such as 

family problems (Repetto, 2018, p. 165) that simply cannot be resolved by any well-intended 

online learning resource or system. Therefore, more work is required to understand how to 

support at-risk learners in a technology-based online learning space for our institutional 

context.  

 

Although our study showed that learners with low GPA but engaged sufficiently with LeaP 

could still potentially benefit, we could not confirm any pre-post learning gains differentiated 

by prior ability as evidenced in the literature. This is because our outcome measure focused 

on a single assessment, rather than the change in score between the DQ and post-study 

question in the LeaP environment. While the system does generate scores on all question 

types, we did not choose to analyze differences because the learning scope of the LeaP 

module was rather narrow. Pre-post gains would be more meaningful when the environment 

is enriched with more content, tasks and highly varied learning pathways. Another limitation 

is that it could well be the case that learners simply skipped the recommended learning 

pathways or study plan and jumped directly to the practice or post-test questions. In other 

words, the better test performance may just be an effect of repeat practice, rather than a 

repeat study effect. Again, while the LeaP system could generate behavioral and interaction 

data (for example, the number of views of the recommended reading resources or study path), 

analyzing such data would be more meaningful with a larger content scope. However, in the 

light of learner choice and autonomy within a learning space offering personalized learning 

options, the issue of bypassing the recommended study plan may not be detrimental to 

learning. Akin to Bartelet et al. (2016), pre-post analysis and content engagement data could 

shed light on the choices and behaviors of all learners across a range of topics, including 

those at-risk. This could be a scope for future research. 

 

Despite the limitations, both learners and instructors have benefitted from this simple pilot 

implementation. This is because classroom time was very limited, and instructors typically 

have very little or just no time to do revision or practice with students in class before an 

assessment. Based on the statistics generated by the system, we estimated that each learner 

spent between 1 to 2 hours self-studying the LeaP module. If we multiply this amount of time 

by about 500 learners, it is immediately apparent that one-on-one personalized coaching by 

human instructors within curriculum time is simply impractical and infeasible. We also 

questioned whether we could substitute the LeaP module with revision question sets or 

quizzes posted on the LMS, complete with automated feedback for learner’s self-study. This 

is certainly possible, but the user interface would lack the feature that guides learners back to 

the lecture materials to review the concepts they faulted on. LeaP offers a more integrated 

interface and the advantage of recommending appropriate lesson contents to learners 

immediately upon answering the DQ.  

 

5. Conclusion 

 

In conclusion, our results replicated the main findings of previous research to support the 

learning efficacy of ITS or AI-enabled systems offering personalized learning options. The 

experience and lesson gained in this pilot trial have guided us in terms of optimizing and 



 

configuring our content to ensure that learning pathways are aligned to match learners’ as-at 

needs. We may say with much conviction that compared to human instructors, AI-enabled 

personalized learning systems possess outstanding features that enable the scale-up of 

individualized instruction to suit the needs of diverse learners. This removes the need for 

tedious and constant monitoring by human instructors. We are perhaps not far away from a 

utopian vision of delivering personalized education to learners with reasonable effort, as 

Bloom (1984) hoped for. 
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