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Abstract 
This study conducted an item analysis to validate a dichotomously scored test using the 
Rasch measurement model, an Item Response Theory approach for test validation. It aimed to 
improve the quality of the test items in a departmentalized mathematics examination that had 
undergone content validity through subject experts. The response data gathered from 
randomly selected college students who had undergone the examination were fitted to the 
model. Rasch analysis revealed that the test appeared to be relatively difficult, indicating that 
the it needs to be revised further or that a better teaching strategy is needed to facilitate 
learning. It was also evident from the results that several misfit items appeared, and evidence 
of multidimensionality existed, which suggested that these items should be further modified, 
discarded or amended. However, both the item and person reliabilities were high. These 
findings suggest that an objective measurement for test validation, such as the Rasch 
measurement model, could help achieve greater precision in diagnosing test items and, 
consequently, construct a better measure for the assessment of students’ abilities. 
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Introduction 
 
The goal of using tests in the teaching and learning process is accomplished only if the test is 
of good quality. Thus, developing valid and reliable tests is critical for evaluating student 
performance. The quality of any test was determined by analyzing the responses of students 
to any examination (Elee, L. I.; Onah, F. E. & Abanobi, C. C.,2018). 
 
Classical Test Theory (CTT) and Item Response Theory (IRT) are two generally acceptable 
frameworks for evaluating the quality of tests in educational and psychological measurements 
(IRT). For approximately 100 years, classical test theory (CTT) has been extensively serving 
the testing field. Although CTT can provide important evidence for measuring instrument 
accuracy, several new psychometric tools may supplement or even replace this approach in 
collecting more accurate evidence to support inferences about the meaning and interpretation 
of scores. (Muñiz, 2017; by Zanon, et al., 2016).  
 
The implementation of item response theory (IRT) in psychological and educational 
assessments has caused major and positive changes in psychological test development 
(Hambleton & Jodoin, 2003; Zanon et al., 2016). It has become a popular methodological 
framework for modeling response data from assessments in education and health; however, 
its use is not widespread among psychologists. (Zanon, et al., 2016). 
 
IRT is a statistical theory composed of a variety of mathematical models that have the 
following characteristics: a) to predict person scores based on abilities or latent traits, and b) 
to establish a relationship between a person’s item performance and the set of traits 
underlying item performance through a function called the “item characteristic curve” 
(Hambleton et al. 1991, Zanon, et al., 2016). The development of the Item Response Theory 
(IRT) addressed some weaknesses of CTT, namely: (1) the estimation of the test taker’s 
ability does not depend on the characteristics of the tests used; (2) the item parameter 
estimation does not depend on the ability of the test taker; and (3) the measurement error can 
be searched for each individual (Susongko, 2016).  
 
Item Response Theory models attempt to describe respondents' behavior based on their 
responses to each item. The logistic function is used to estimate the model in general, with 
three different formulations: 1PL (One Parameter Logistic model), 2PL (Two Parameter 
Logistic model), and 3PL (Three Parameter Logistic model). The 1PL model, also known as 
the Rasch Model after the Danish mathematician Georg Rasch, was used as a tool for item 
analysis in this study. 
 
Rasch analysis is a psychometric technique developed to improve the precision with which 
researchers construct instruments, monitor instrument quality, and compute respondents' 
performance (Boone, 2016). The Rasch measurement model predicts how each person (the 
test-taker) should respond to each question based on the response data from the test's 
questions (referred to as items in this paper). In this analysis, both the test questions and the 
test takers are incorporated into a predictive mathematical model. That is, the difficulty level 
of the items and the ability level of the individuals are placed on a common scale so that the 
items and individuals can be easily compared (Karlin & Karlin, 2018). 
 
Previous research has shown that analysis using the Rasch model is considered an appropriate 
and effective measurement technique for representing both students' ability to understand the 
material and the quality of the questions created (Runnels, 2012; Claesgens, et al., 2013; 



Johnson, 2013; Boone, 2016; Talib, et al., 2018). One of the most fundamental ideas for 
understanding why Rasch theory is such an important tool for researchers is the concept of 
linearity (Boone, 2016). Based on their findings on the unexpected number of recommended 
modifications and deletions on the tests examined, Karlin and Karlin (2018) confirmed that 
the Rasch measurement model can be of tremendous value by offering greater precision in 
student assessment as well as greater assistance in test validation. 
 
Rasch analysis is already being used by researchers in life sciences education to validate tests 
(Boone, 2016). Moreover, numerous global and local statistical tests have been proposed over 
the years to assess data conformity to the Rasch model principles (Baghaei, et al., 2017). 
However, most teachers are still unfamiliar with the approach's applicability to test 
improvement. As a result, the researcher finds it advantageous to employ this technique 
to explore its pertinence and improve measures in the assessment of their students. 
 
Thus, the researcher attempted to do Rasch analysis for this purpose because this method 
maximizes the homogeneity of the trait and allows greater reduction of redundancy while 
sacrificing no measurement information by decreasing items and/or scoring levels to yield a 
more valid and simple measure (Bond & Fox, 2012). According to Bond and Fox (2001), the 
trait levels (the probability of a correct response or the probability of endorsing any option on 
each item) are modeled as a mathematical function of the difference between the person and 
the item parameters (Prieto-Adanes & Dias-Velasco, 2003; Zamora, et al., 2018). 
 
The departmentalized examination in mathematics was used as an instrument in this study. 
This test was developed by mathematics and education experts and tested for content validity. 
It was administered to students who took Mathematics in the Modern World (MMW), which 
is one of the general education (GE) subjects mandated by the Commission on Higher 
Education (CHED Memorandum Order No. 20. S 2013) for college students who have 
completed the K to 12 programs. Because the test was multiple-choice, Rasch analysis on a 
dichotomously scored test was used. Its specific goals were to determine the item difficulty of 
each test item used in the test, diagnose the fit of the test items in the Rasch Model, assess the 
items' difficulty level against the students' level of ability, determine the item and person 
reliability, and evaluate the test's unidimensionality. 
 
Participants 
 
This study utilized the individual test results of 300 randomly chosen college students who 
took a Mathematics Achievement Test as a measure of their academic performance in 
Mathematics in the Modern World (MMW), a general education (GE) subject required by the 
Commission on Higher Education (CHED Memorandum Order No. 20. S 2013). The sample 
size was adequate to meet the requirements of the Rasch analysis (Linacre, 1994; Bond & 
Fox, 2012; Souza, 2017). 
 
Procedure 
 
After the Achievement Test was administered to all students, permission was requested from 
the head of the institution to secure copies of the test results. The student’s performance on 
each item was summarized, fitted to the Rasch model, and examined. A number right scoring 
method was applied in this study because the test is a multiple-choice type. That is, correct 
answers were scored with a positive value (1), and incorrect answers and absent or omitted 
answers with a value of zero (0). Hence the test was dichotomously scored. 



In Rasch analysis, the probability of correctly answering an item can be expressed 
mathematically as the general statement (Bond & Fox, 2012): 
 
    Pni(x = 1) = f(Bn – Di)      (1) 
 
Where Pn is the probability, x is any given score, and 1 is a correct response. This equation 
states that the probability (Pn) of a person n getting a score (x) of 1 on a given item (i) is a 
function (f) of the difference between a person’s ability (Bn) and an item’s difficulty (Di). 
Given Bn and Di, we can express then mathematically the function (f) expressing the 
probability of a successful response consisting of a natural logarithmic transformation of the 
person (Bn) and item (Di) estimates as follows (Bond & Fox, 2012; Chan, et al., 2014; 
Sumintono, 2018; Winarti, et al., 2019): 
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Where is the probability of person n on item i scoring a correct (x =1) response rather than an 
incorrect (x = 0) one, given person ability (Bn) and item difficulty (Di). The given equation is 
the technical aspect of the Rasch model for dichotomously scored instruments. In this study, 
the Winsteps software was utilized, to facilitate the computation of the items’ difficulty level, 
its fit to the Rasch model, the relationship between the items’ level of difficulty and students’ 
level of ability, and unidimensionality. 
 
Data Collection 
 
To gather quantitative data on student performance, a Mathematics Achievement Test 
constructed by a committee of faculty members specializing in Mathematics and Education 
was utilized in this study. This 50-item multiple-choice test covers the following topics: a) 
mathematics in our world (11 items), b) mathematical language and symbols (12 items), c) 
problem-solving and reasoning (5 items), and d) data management (22 items). This test was 
used to measure students’ level of knowledge in Mathematics in the Modern World (MMW). 
MMW is a General Education (GE) subject taught to college students who have completed 
the added two years of high school under the K to 12 (Kindergarten to Grade 12) program 
(CHED Memorandum Order No. 20. S 2013). The instrument underwent content validity 
testing before test administration and item analysis. The test was subjected to the following 
process: (1) development of a Table of Specifications (TOS), (2) generation of an item pool, 
(3) review of the initial item pool by experts, (4) test administration, and (6) item analysis. 
The examinee was given one point for every correct choice of the letter that corresponded to 
the correct answer; hence, a total of 50 points were expected from each examinee. 
 
Data Analysis 
 
This study conducted an item analysis by fitting the individual raw scores to the Rasch model 
and the item statistics computed were analyzed. 
 
The test items’ level of difficulty estimates was expressed in logits, in which a logit value of 
0 is arbitrarily set as the average or mean of item difficulty estimates (Bond and Fox, 2012). 
For many analyses, item difficulties range from −3 logits to +3 logits (Boone, 2016).  
 



To diagnose the fit of the response data to the model, the infit and outfit statistics of each test 
item were examined. The fit statistics indicate where the test developer should decide 
whether to delete, restore, or reword an item. The value of the item's outfit and infit mean 
square and t statistics will be interpreted using the following range of the chi-square fit 
statistics (Wright & Linacre, 2002; Schumacker, 2004; Bond & Fox, 2012; Ee, et al., 2018; 
Kantahan, et al., 2020): 
 

Mean 
Squares tz Response 

Pattern Variation Interpretation Misfit Type 

> 1.3 > 2.0 Too haphazard Too much Unpredictable Underfit 

< 0.75 < -2.0 Too determined Too little Guttman Overfit 
Table 1: Fit Statistics and Their General Interpretation 

 
Moreover, an item characteristic curve (ICC) of the items was also presented to visualize the 
actual performances of the students on the items that overfit, underfit, and have a good fit to 
the model. 
 
To assess the relations between the test item’s level of difficulty and the student’s level of 
ability, a plot of items according to their order of difficulty was examined through the item-
person Wright map and its estimates computed. 
 
The item and person reliability and separation indices were estimated from the simulation 
performed in the Rasch analysis. An item or person separation index of 1.5 (Ee, et al., 2018; 
Kantahan, 2018) and a reliability value higher than 0.70 was considered acceptable (Taber, 
2018).  
 
Unidimensionality was examined through Principal Component Analysis (PCA) of the 
residuals (Souza et al., 2017; Ee et al., 2018). PCA is one of the diagnoses by the Rasch 
model to ensure that all items share the same dimension, which is capable of sensing the 
ability of the instrument to measure the uniformity of single dimensions with acceptable 
noise levels (Linacre, 2012; Mokshein et al., 2019). For unidimensional measures, it is 
expected that the observed variance explained by the measures roughly matches the expected 
variance in the model. In addition, PCA analyses the components in the correlation matrix of 
the residuals (called contrasts). The “first contrast” is the component that explains the largest 
possible amount of variance in the residuals. The decision to consider a measure 
unidimensional or multidimensional is usually made by the researcher according to the 
purpose of the test. However, unexplained variances in the first contrast that are greater than 
2.0 eigenvalue may indicate the presence of a second dimension (Souza et al., 2017; Ee et al., 
2018). 
 
Results and Discussion 
 
This section summarizes the findings from a test assessment using the Rasch measurement 
model, including test item difficulty, test item fit to the model, test item difficulty and student 
ability relation, test item and person reliability, and unidimensionality. 
 
 
 
 



Item Difficulty of the Individual Test Item  
 
The item statistics from a Rasch analysis of a dichotomous test used in the study are shown in 
Table 2. It displays an ordered list of all the items (first column) based on their item difficulty 
measure (third column) and the associated logit error estimate (fourth column). The data in 
the second column showed the number of students who correctly answered the question. 
 

Item Raw 
Score 

Difficulty 
Measure 

Model 
S.E. 

INFIT OUTFIT 
MISFIT TYPE 

MNSQ ZSTD MNSQ ZSTD 

13  121  .01  .12 1.24  5.5 1.32 6.0 Underfit 
14   50 1.35  .16 1.10  1.0 1.19 1.4 Fit 
 8   84  .62  .14 1.16  2.4 1.18 2.2 Underfit	
28  145 -.35  .12 1.15  4.2 1.18 4.0 Underfit	
 5   87  .56  .13 1.13  2.1 1.14 1.8 Underfit	
10  111  .16  .13 1.09  1.9 1.14 2.5 Fit 
42   98  .37  .13 1.10  1.8 1.13 1.9 Fit 
38   98  .37  .13 1.07  1.3 1.10 1.5 Fit 
31   89  .53  .13 1.00   .0 1.08 1.1 Fit 
22   81  .67  .14 1.07  1.1 1.07  .8 Fit 
44   63 1.04  .15 1.00   .1 1.06  .6 Fit 
48  147 -.38  .12 1.05  1.5 1.05 1.2 Fit 
41  100  .34  .13 1.01   .1 1.05  .7 Fit 
12  138 -.25  .12 1.04  1.2 1.04 1.0 Fit 
23  237 1.87  .15 1.00   .1 1.04  .4 Fit 
34  138 -.25  .12 1.02   .6 1.04  .9 Fit	
33  216 1.46  .13 1.03   .6 1.01  .2 Fit	
27   59 1.13  .15 1.03   .4  .99  .0 Fit	
37  206 1.29  .13 1.00   .0 1.03  .4 Fit	
 6   66  .97  .15  .96  -.5 1.03  .3 Fit	
32  157 -.53  .12 1.01   .4 1.03  .6 Fit	
 4  105  .26  .13 1.01   .3  .98 -.3 Fit	
49   88  .55  .13  .99  -.2 1.01  .1 Fit	
35  103  .29  .13 1.00   .1  .99 -.1 Fit	
18   91  .49  .13 1.00   .0 1.00  .0 Fit	
50  120  .02  .12 1.00   .0  .99 -.2 Fit	
15  126 -.07  .12 1.00  -.1  .99 -.2 Fit	
20  107  .23  .13  .99  -.2 1.00  .0 Fit	
39  200 1.19  .13 1.00  -.1  .99 -.2 Fit	
45  121  .01  .12 1.00  -.1  .99 -.1 Fit	
47  195 1.11  .13  .97  -.6  .99 -.1 Fit	
11  106  .24  .13  .99  -.3  .97 -.5 Fit	
17  130 -.13  .12  .98  -.4  .98 -.4 Fit	
25  153 -.47  .12  .98  -.5  .97 -.7 Fit	
40  211 1.37  .13  .95 -1.0  .98 -.2 Fit	
46  131 -.15  .12  .97  -.8  .96 1.0 Fit	
43   82  .65  .14  .96  -.6  .96 -.4 Fit	
19  169 -.71  .12  .95 -1.3  .94 1.2 Fit	
 3  154 -.49  .12  .95 -1.5  .93 1.6 Fit	
29   80  .69  .14  .93 -1.0  .92 -.9 Fit	
24  128 -.10  .12  .93 -1.7  .91 2.0 Fit	
16   97  .39  .13  .93 -1.4  .93 1.1 Fit	
30  112  .15  .13  .93 -1.6  .91 1.8 Fit	
26   74  .81  .14  .91 -1.3  .92 -.9 Fit	
36  196 1.12  .13  .90 -2.4  .91 1.4 Overfit 
 2  165 -.65  .12  .91 -2.9  .88 2.7 Overfit	
 1  185 -.95  .12  .90 -2.7  .85 2.7 Overfit	
21   46 1.45  .17  .88 -1.1  .88 -.9 Fit 
 7  120  .02  .12  .87 -3.4  .85 3.2 Overfit	
 9   88  .55  .13  .86 -2.4  .84 2.3 Overfit	
Mean 123.5 .00 .13 1.00 -.1 1.01 .1  
S.D. 46.1 .75 .01 .08 1.6 .10 1.6  

Table 2: Item Statistics: Misfit Order 
 



Based on the value of the item difficulty estimates, which are expressed in logits, items 21, 
14, 27, 44, and 6 appeared to be the most difficult items, having the highest value of the 
difficulty measure estimate. Item 21, which deals with the science to which the golden ratio 
belongs, is considered the most difficult item progressively, with the highest positive logit 
score.  
 
Items 23, 33, 40, 37, and 39, on the other hand, are among the easiest because they have the 
lowest negative value of the item difficulty measure computed. Item 23, which covers 
inductive reasoning on number patterns and has negative logit estimates, was the most 
straightforward.  
 
Figure 1 depicts the item characteristic curves (ICCs) for Item 23, the easiest item in this test, 
and Item 21, the most difficult item. It can be seen that the probability of success on Item 23 
begins with a negative logit (-1.87), implying that even students with low ability have a 
chance of getting the item correct. In this case, there is a greater likelihood that more students 
will succeed in this item. Meanwhile, the ICC for item 21 shows that the likelihood of 
success on this item decreases from 1.5 to 7 logits. This only demonstrates that overcoming 
the difficulty of this item requires a high level of ability. As a result, students struggle to 
succeed in this item. 
 
 

 

 

 

 

 

             

 
 
In Rasch analysis, the mean of item difficulties was set to 0 points by default. Ignoring the 
measurement error for a moment, items 7, 13, 45, and 50 were calculated as having difficulty 
estimates that were closer to the exact value (0 logits). This means that the difficulty level of 
these items is within the range of the test-takers' abilities. In this case, the students have a 50 
percent chance of correctly obtaining the item.  
 
Test Item’s Fit to the Rasch Model 
 
The results of the individual test item fit statistics for both the unstandardized and 
standardized forms are also shown in Table 2. Mean squares are reported in the 
unstandardized form, while t-statistics are reported in the standardized form. 
 
According to the findings, items 13, 28, 8, and 5 underfit the model because their infit t-
values exceed 2.0 and their outfit t-values exceed 1.3. These positive fit statistics values 
indicate that the response string has more variation than expected; that is, it is less haphazard 
than expected. This means that a capable person gets easier items wrong unexpectedly, while 

Figure 1: Item Characteristic Curves (or ICCs) for item 21 and item 23 



a less capable person gets harder items right unexpectedly. Similarly, the items' standardized 
mean square values revealed 13 to 24 percent more variation between the observed data and 
the model-predicted response pattern than would be expected if the data and the model were 
perfectly compatible. The presence of these underfit items in the test may degrade the test's 
quality; thus, the test developer should re-examine these items and scrutinize any mistakes or 
errors that may have been made in the test item's construction. 

 

Figure 2. Actual person performance versus theoretical item characteristics curve (ICC) 
for underfit item 13 

 
Figure 2 depicts the fit for the actual student performances (the jagged empirical ICC, blue 
curve) against the Rasch model expectations (the theoretical ICC, red curve) for item 13, the 
test item with too much variation and an almost exact difficulty estimate (0 logits). 
 
The segment of the output for item 13 shows poor fit characteristics from the modeled 
expected, though its mean square value is not too bad. A poor fit indicates that the actual 
performance of the test-takers deviated from the modeled expectation. In this case, a slight 
deviation was observed between -2.0 and -1.0 logits and from a logits measure greater than 
0.5. The curve also shows that students with a low level of ability have a higher chance of 
getting this item correct than those with a high level of ability, which is not expected.  
 
Items 7, 2, 1, 9, and 36, on the other hand, overfit the model because their infit t values are 
less than -2 logits and their outfit statistic is less than 0.75 logits. These values indicate less 
variation than was modeled, implying that the response string is more similar to the Guttman-
style response string, in which all easy items are correct and all difficult items are incorrect. 
The value of the infit mean square confirmed these findings, revealing a range of 9 to 14 
percent less variation in the observed response pattern than was modeled. Although the 
presence of overfit items has few practical implications, test developers should be wary of 
their presence because these items may inflate test item reliability, leading us to conclude that 
the quality of our measure is higher than it is; additionally, the omission of overfitting items 
may rob the test of its best items; thus, a revision of these items should be performed first 
before recommending its deletion. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Actual person performance versus theoretical ICC for overfit item 7 
 

Figure 3 displays the students' actual performance versus the theoretical item characteristics 
curve (ICC) for Item 7, a question with too little variation from the expected model. The 
figure shows that the students' actual performance ranges from 1.0 to 2.0 logits higher than 
those predicted. Similarly, their results below -1.5 logits deviated from the model, which was 
lower than expected. Overfitting for a low ability group indicates that the item can distinguish 
between minor differences in ability. An overfit is considered good in Classical Test Theory. 
According to Rasch theory, it is not a bad thing, but it usually indicates that something else is 
going on, such as item dependency (Linacre, 2017). 
 
The item's difficulty level was at the midpoint of the test. As shown in Table 2, its mean 
square values are not too bad and are closer to the expected value of 1.0. The t-statistics, on 
the other hand, deviated farther from what was expected of the model. The item clearly 
follows the Guttman style in this case, as it overestimates the expectation based on the item's 
difficulty and the students' ability. 
 
The findings on the underfit and overfit items only show that the observed data on these items 
do not conform to the Rasch Model because they have a value of outfit and infit t statistics 
that fall outside the acceptable range, despite having an almost exact difficulty level estimate. 
This simply means that these items are less compatible with the model than expected. 
Furthermore, these items imply the presence of multidimensionality; thus, they should be 
modified, discarded, or amended to focus on the target latent trait being tested. The 
evaluation of "fit" items to the Rasch Model ensured the measurement instrument's quality 
(Boone, Staver, and Yale, 2014). 
 
Furthermore, while the mean of the unstandardized fit estimates (i.e., mean squares) 
computed is close to the expected value of 1, with the infit and outfit mean squares being 
close to that ideal, the mean and standard deviation of the standardized version of fit 
estimates (t statistics) show a slight deviation from the expected values of 0 and 1, 
respectively. These findings confirmed that the test was less compatible with the model's 
expectations due to these misfit items. 
 
Items that satisfy the requirement for the mean square value and t statistics, on the other hand, 
are considered to have a good fit and be compatible with the modeled expected. Figure 4 
depicts the students' actual performance versus the theoretical item characteristics curve 
(ICC) for item 50, one of the items with a good fit. The points plotted on the jagged curve 
(blue curve) represent the actual test performance of the 300 students. When the 



performances fit perfectly to the Rasch model, the smooth curve (red curve) models the 
expected performance of the interaction between persons and the item (an impossible 
expectation). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Actual person performance versus theoretical ICC for item 50 
 
According to Figure 4, the students' performance in item 50, as reflected by the plotted points 
of their mean actual responses, is quite close to the Rasch model expectation of performance 
(the ICC). Although there was a slight deviation from the modeled curve around -2.0 logits 
relative to the item difficulty, this is the variation of actual around expected predicted by the 
Rasch model.  
 
In this case, the infit and outfit mean square values for both items were close to 1.0, while 
their standardized versions, the infit and outfit t-statistics, were close to zero. These values 
only indicate the compatibility of the item with the model in addition to its difficulty measure 
estimate, which falls at the midpoint of the test with an almost exact value (0 logits). 
 
Item Difficulty and Student Ability Relations 
 
Figure 5 displays a wright map of the relationships between the students' ability and the 
difficulty of the items. As quality evidence, this graphical representation connects item 
difficulties and student ability estimates on a common scale; thus, both variables should 
match to justify that the test is maximally informative (Junpeng, 2020).  
 
The distance of the step from the bottom of the path represents the difficulty of the item 
relative to other items.  This is our representation of the item difficulty. Closer to the bottom 
is easier, and farther away is more difficult. Based on the representation of persons and items 
on the map, Item 33 was much more difficult than Item 23, whereas Item 21 was the most 
difficult on this test. In this test, most students did not succeed in Item 21. Item 23, however, 
was easy. In fact, the easiest on this test, and most of the students got Item 23, correct. These 
findings show that all items were useful for discriminating ability among students of this 
group since not everyone was successful on the easiest item or got the most difficult item 
wrong. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Item-person Wright Map 
 
In addition, items 7, 13, 45, and 50 are located at 0 points in the item-person map for having 
an almost exact difficulty estimate (0 logits). Nine students had a 50 percent chance of getting 
these items correct. Furthermore, 57 more students could probably get these items right with 
more than a 50 percent probability of success. However, the remaining 78 percent of the total 
number of takers failed in these items.  
 
This result shows that this type of test is somewhat a little bit difficult for the examinees’ 
level of ability, although there are two students with a perfect score of 50. It can be observed 
that only one-third of the total samples have an equal to or higher than 50 percent chance of 
obtaining a correct answer on half of the total items. This means that the level of ability of the 
majority of examinees did not exceed the level of difficulty of the majority of the items. The 
figure shows that the majority of examinees failed the exam. This result could be regarded as 
a serious inadequacy in a test from a general test development perspective. The test requires 
even easier questions to raise the “ceiling” of the test.  Otherwise, teachers need a better 
teaching strategy to facilitate their students’ learning (Bond & Fox, 2012). 



Item and Person Reliability  
 
Table 3 presents the reliability of the test items. It includes an overall summary of the items’ 
mean difficulty estimates, item and person reliability, and separation. The table shows a large 
positive value for the item difficulty mean estimate, which indicates that the test is difficult 
for the sample group of students who took the examination. This corroborates the results 
reflected in the item-person Wright map shown in Figure 5. The standard deviation of 46.1 
for item estimates indicates a greater spread of item measures or variation in those measures 
than with person measures. 
 
In this test, the reliability of the item difficulty estimates (0.97) was very high  on a scale of 0 
to 1, and was more than acceptable. Moreover, the item separation value of 5.54 expresses 
that the persons have differentiated more than five levels of item difficulty. These findings 
indicate that we can quite readily rely on this order of item estimates to be replicated when 
we administer the same test to other groups of students for whom it is suitable. According to 
Nielsen (2018), good measurements should have a high degree of reliability if the scores are 
consistent. However, the findings of the overfitting items may affect the level of reliability. 
Thus, further examination of the effects of these items on test reliability should be performed.   
 
However, the person reliability index (0.77) is relatively high. This suggests that if the same 
group of persons were to be given another set of items measuring the same construct, almost 
the same estimate of a person’s ability would be expected. The person separation of 1.81 
states that items were able to differentiate between more than one level of a person’s ability.  
 

Statistics Score (Item) Score (Person) 
Mean 123.5 20.6 
S.D. 46.1 6.9 
SD (adjusted) 0.74 0.60 
Real RMSE 0.13 0.33 
Item/Person Reliability 0.97 0.77 
Item/Person Separation 5.54 1.81 

Table 3. Summary of Item and Person Estimates 
 
Unidimensionality of the Test  
 
The unidimensionality of the test was examined through Principal Component of Analysis 
(PCA) of residuals in Rasch. Unidimensional means that the test only measures one’s ability 
(Susongko, 2016). Tables 4 and 5 summarize these findings. 
 
The data in Table 4 reveal that there was a total variance of 65.9 eigenvalue units in the 
observations. Of this total variance, 15.9 eigenvalue units were explained by person and item 
measures. Meanwhile, the unexplained variance had 50 eigenvalue units that covered more 
than 75 percent of the total variance. This value varies from the result of the Rasch measure 
and the difference is significant. This obtained value of the unexplained variance from other 
sources could be anything not meant to be included in the test; hence, it was not explained by 
the Rasch measurement. 
 
 
 
 



                                                        Empirical Modeled 
Total variance in observations      =         65.9  100.0%  100.0% 
Variance explained by measures  =         15.9   24.2%            24.6% 
Unexplained variance (total) =         50.0   75.8%  100.0%    75.4% 
     Unexplained variance in 1st contrast =          3.2    4.8%    6.4%  
     Unexplained variance in 2nd contrast  =          2.5    3.8%    5.0%  
     Unexplained variance in 3rd contrast  =          2.1    3.2%    4.2%  
     Unexplained variance in 4th contrast  =          2.0    3.0%    4.0%  
     Unexplained variance in 5th contrast  =          1.7    2.5%    3.3%  

Table 4. Table of Standardized Residual Variance (in Eigenvalue Units) 
 
Based on the results, substantive structures contribute to unexplained variance. After 
extracting information from the data through Rasch measurement, residuals were left, as 
reflected in the contrasts indicated in the findings. Residuals are the observed performance of 
students on the item minus what is expected by the Rasch model. The smaller the residuals, 
the better the data fits the model (Kazemi, 2020). In this case, the results show five contrasts, 
and some consist of more than 2 eigenvalue units which indicates the existence of potential 
dimension (Linacre, 1998; Ee, Yeo, and Kosnin, 2018). Hence, a principal component 
analysis of Rasch residuals (PCAR) or linearized Rasch residuals was employed to extract 
meaningful information from these contrasts. Table 5 presents a summary of the findings for 
the first factor, which had the highest factor sensitivity ratio among the contrasts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Standardized Residual Variance Scree Plot (Contrast 1) 
 
In the first contrast, the unexplained variance was 3.2 units which means that there were 
around three eigenvalues creating a subdimension in the data. These items have something in 
common other than the Rasch dimension, which clusters these items together. Figure 6 shows 
the factor plot of the standardized residuals after the primary Rasch dimension was extracted. 
It can be seen that items 21(A), 44(B), and 9(C) have higher factor loadings and can be seen 
at the top of the map. These items have substantial variance that remains unexplained by the 
primary Rasch measure. 
 
Table 5 lists the factor loadings for the first dimension (contrast 1). These loadings indicate 
three items (21, 44, and 9) with substantial positive loadings on the factor discovered in the 
item residuals (i.e., with an off-dimension loading of 0.4 or greater).  On the other hand, two 
items (40 and 36) are negatively correlated with the factor. 



Loading Measure Infit Mnsq Outfit Mnsq Entry Number Item 

   .55      1.45  .88   .88  A   21 Item 21 
   .53      1.04 1.00  1.06  B   44 Item 44 
   .42       .55  .86   .84  C    9 Item 9  
   .37       .69  .93   .92  D   29 Item 29 
   .36       .49 1.00  1.00  E   18 Item 18 
   .28       .02 1.00   .99  F   50 Item 50 
   .27       .65  .96   .96  G   43 Item 43 
   .27      -.07 1.00   .99  H   15 Item 15 
   .27       .97  .96  1.03  I    6 Item 6  
   .21       .62 1.16  1.18  J    8 Item 8  
   .21      -.13  .98   .98  K   17 Item 17 
   .19       .81  .91   .92  L   26 Item 26 
   .19       .55  .99  1.01  M   49 Item 49 
   .17       .39  .93   .93  N   16 Item 16 
   .17       .16 1.09  1.14  O   10 Item 10 
   .15      1.35 1.10  1.19  P   14 Item 14 
   .11      -.47  .98   .97  Q   25 Item 25 
   .10      -.38 1.05  1.05  R   48 Item 48 
   .10       .67 1.07  1.07  S   22 Item 22 
   .10       .23  .99  1.00  T   20 Item 20 
   .08       .29 1.00   .99  U   35 Item 35 
   .07      -.10  .93   .91  V   24 Item 24 
   .06       .37 1.07  1.10  W   38 Item 38 
   .06       .15  .93   .91  X   30 Item 30 
   .04       .02  .87   .85  Y    7 Item 7  
   .04      -.15  .97   .96  y   46 Item 46 
   .03       .01 1.00   .99  x   45 Item 45 
   .00       .53 1.00  1.08  w   31 Item 31 
  -.50     -1.37  .95   .98  a   40 Item 40 
  -.50     -1.12  .90   .91  b   36 Item 36 
  -.39     -1.29 1.00  1.03  c   37 Item 37 
  -.38     -1.19 1.00   .99  d   39 Item 39 
  -.32     -1.46 1.03  1.01  e   33 Item 33 
  -.31     -1.87 1.00  1.04  f   23 Item 23 
  -.29     -1.11  .97   .99  g   47 Item 47 
  -.29      -.25 1.02  1.04  h   34 Item 34 
  -.27      -.53 1.01  1.03  i   32 Item 32 
  -.24       .24  .99   .97  j   11 Item 11 
  -.22      -.35 1.15  1.18  k   28 Item 28 
  -.21      -.95  .90   .85  l    1 Item 1  
  -.18       .37 1.10  1.13  m   42 Item 42 
  -.18       .26 1.01   .98  n    4 Item 4  
  -.18      -.25 1.04  1.04  o   12 Item 12 
  -.17      -.49  .95   .93  p    3 Item 3  
  -.14      -.65  .91   .88  q    2 Item 2  
  -.10      1.13 1.03   .99  r   27 Item 27 
  -.06      -.71  .95   .94  s   19 Item 19 
  -.06       .01 1.24  1.32  t   13 Item 13 
  -.01       .34 1.01  1.05  u   41 Item 41 
   .00       .56 1.13  1.14  v    5 Item 5  

Table 5: Principal Component Analysis of Standardized Residual Correlations 
for Items on First Dimension (Sorted By Loading) 

 
These findings provide empirical evidence for the existence of a separate subscale. However, 
it is up to the researcher to decide whether this is sufficiently large and meaningful to 
measure separately from Rasch measures. The costs/benefits of including these items as part 
of the original Rasch dimension, hence potentially losing some sensitivity or validity of the 



measurement, or excluding these items from the total score and works towards assessing and 
interpreting the other dimension separately should be reflected. 
 
Conclusion 
 
This study focuses on the application of the Rasch model, an IRT approach for test item 
analysis. Based on the findings, the test appeared to be difficult based on the takers’ level. 
Hence, there is a need to construct easier questions or better teaching strategies to facilitate 
the learning of their students.  
 
In addition, further examination of the effect of the overfit items on the level of test reliability 
was suggested by the analysis. Based on the findings, these recommended modifications of 
the test show that even if a test had already undergone content validity through experts in the 
given field, the Rasch measurement model can be of tremendous value by offering greater 
precision in diagnosing and validating a test, as well as in the assessment of the students 
(Karlin & Karlin, 2018).  
 
Furthermore, it shows that the examination subjected to Rasch analysis still had some misfit 
items. Moreover, several substantive structures contributed to the unexplained variance. 
These findings provide empirical evidence for the existence of a separate subscale or 
multidimensionality, which suggests a modification, discarding, or amendment of the misfit 
items, focusing on the target latent trait being tested. 
 
This research demonstrates the importance of applying an Item Response Theory (IRT) 
approach to item analysis. In this case, Rasch analysis was applied to introduce teachers to 
one of the robust tests that can be used for item analysis. In addition, most of the test being 
constructed was of a multiple-choice type; hence, this study found it beneficial to let teachers 
explore and learn the IRT approach applicable to a dichotomously scored test. 
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