
The Practice of Teaching Java Programming Language to Undergraduate Students

Weijun Chen, Tsinghua University, China

The Asian Conference on Education 2021
Official Conference Proceedings

Abstract
The paper presents our practice of teaching java programming language to undergraduate
students at Tsinghua University, China. The biggest challenge is the design of the course to
improve students’ programming ability.The course consists of two parts: the class lectures
and the after-class exercises, both are designed deliberately. The purpose of the lectures is to
help the students understand the kernel ideas of the object-oriented programming (OOP) and
learn the common used java classes. OOP is difficult for many students, therefore we used
different methods to make the process smoother. For example, Tony Stark and his armor in
the movie “Iron Man” are presented when interpreting the storage of the superclass object
and the subclass object. The java class library is an important component of the language
which contains exceptions, input and output streams, files, graphics user interface, threads,
network programming, etc.The most important part of the after-class exercises is a
programming project. Learning by doing is probably the best way to get familiar with a new
language. The students are required to write a complete program (generally a computer
game) using java individually. In such a project, all the technologies learnt in classroom are
used and combined together. The games written include Tetris, Snake, Battle City, etc.This
course has been taught for 6 years at Tsinghua and about 740 students were enrolled totally.
These students were from different majors. The examination results and the programs they
wrote indicate that they achieved major improvements after the course.

Keywords: Java Programming, Course Design, Ability Development

iafor
The International Academic Forum

www.iafor.org

Introduction

Java is one of the world's most popular programming language, it is widely used in software
industry. For example, Elasticsearch is a real-time distributed search and analytics engine. It
allows you to explore your data at a speed and at a scale never before possible. Many famous
websites such as Wikipedia, StackOverflow, Github, Facebook, Quora, LinkedIn, Netflix are
using Elasticsearch to search all kinds of documents, and this powerful search engine is
developed in Java.

We provide a Java programming course for undergraduate students at Tsinghua University,
China. It is an optional course for anyone interested in studying Java programming. The
students are required to have basic prior programming experience before taking this course.
For example, they know how to write a procedure to solve a practical problem in the C
language. The course is given in one semester of sixteen weeks, and in each week, there is
one three-hour lecture and one three-hour lab session. Generally there are more than 70
students in the class, they are from different majors such as materials science and
engineering, chemical engineering, hydraulic engineering, mechanical engineering,
automotive engineering and building science & technology. The textbook used is
Introduction to Java Programming, which was written specifically for this course by the
author of this paper.

The course consists of two parts: the class lectures and the after-class exercises, both of
which are important in learning Java language. The class lectures tell the students the basic
ideas of the object-oriented programming and help them to learn the common used Java
classes. The after-class exercises give students the opportunity to practice the theory and
skills learned in the classroom. Learning by doing is particular important when you try to
study a new programming language.

The author of the paper (Shi, 2012) have taught the course for several years and find that it is
not an easy job. Firstly, the students are from different majors and they have few (if not zero)
professional training before taking the course. For example, the code they write may be
correct functionally, however they are in bad programming styles and can hardly be
understood by other programmers. This situation can lead to serious problems when many
programmers cooperate with each others to complete a software project.

Secondly, the course is an optional one for the students and they may not spend as much time
on it as their major courses. A programming course is always tough enough because it has a
lot of homework. The students need to write source code on computer and any small mistakes
will make the program fail to run correctly. Therefore, it will take a student lots of time to
complete the course. However, many students have their major courses which are also tough
enough at the same semester and it is obvious that these courses will have priority when time
is limited.

Thirdly, the students enrolled in this course may have learnt how to write programs in
structural programming languages (such as the C language), but few of them have any idea of
the concept of the object-oriented programming. They are often confused by the difficult
OOP concepts such as Abstract, Encapsulation, Inheritance and Polymorphism. A common
situation is that a student can write a function to solve a particular problem, but he doesn’t
know how and why to combine several functions with a couple of variables to make a class.

Therefore, it is a great challenge for us to provide better service to the students when teaching
this course, we need to design the course carefully and elaborately.

Class lectures

The purpose of the class lectures is to help the students understand the kernel ideas of the
object-oriented programming and learn the common used java classes.

Topics covered in the course include:
l Introduction: history of Java language, the Java platform, structure of a Java program,

Java IDE (Integrated Development Environment)
l Java language basics: variables, constants, data types, expressions and operators, the if

statement, the switch statement, the for loop statement, the while loop, the do-while loop,
the break and continue statements, one-dimensional arrays, two-dimensional arrays

l Java OOP: classes and objects (defining classes, using classes, methods, references,
static types), access control (public, protected, default, private), method overload, storage
management, inheritance (parent and subclass), polymorphism (override, method
binding, abstract classes, interfaces)

l Exceptions: what is an exception, why use an exception, try-catch structure, throws
l Input and output: byte streams, char streams, buffers, files
l Graphic User Interface (GUI): the Graphics class, the Color class, the Font class, Swing

components (containers, basic controls, layout manager, event handling)
l Thread: process and thread, Java thread, data sharing between threads, thread mutex and

synchronization, thread scheduling and priority
l Network programming: principles of computer networks, URL(Uniform Resource

Locator), TCP(Transmission Control Protocol) programming, UDP(User Datagram
Protocol) programing

l Object collections: collections, List interface (ArrayList, LinkedList), generic types, Set
interface (HashSet, TreeSet), Map interface (HashMap, TreeMap)

l Android programing: mobile application development, the Android operating system, the
Android IDE, develop an Android application

l Writing solid code: coding conventions (naming, comments, error handling, style and
layout), program debugging, test cases development

These topics can be divided into three parts. The first part discusses the Java language basics,
i.e. how to write a computer program in Java language. As we know, when James Gosling
and his colleagues invented the Java language 30 years ago, they thoroughly studied and
compared the C/C++ language, therefore, this part of the Java language is quite similar to that
of C/C++.

The second part is Java OOP, which is the core foundation of the course. Every Java
application is a combination and interaction of different kinds of classes. Furthermore, every
programmer need to use the libraries implemented by the language system when developing a
practical software project and the libraries provided by Java are also in the form of classes.
However, students often have difficulty in learning the OOP part of the Java because it is
abstract and hard to understand. Therefore, we have to try our best to teach the students using
all kinds of valid methods.

The third part is commonly used Java class libraries. To become an experienced Java
programmer, it is very important to get familiar with these libraries. We don’t have to build a
software system from scratch, we can build it on top of the existing components.

The methods

To make students understand the contents of the class lectures easier, various of methods are
used.

The first method is to propose analogues in life for those abstract concepts in theory. When
students see those difficult concepts, they may feel that it is hard to understand. But when
they see these visual examples, they know what it means immediately.

For example, in class we will introduce the memory storage of objects. Given a superclass
and a subclass, if we construct a subclass object, on the one hand this object is an
independent and complete object, on the other hand there is also a superclass subobject
hidden inside it. When the students read this paragraph, generally they will get totally
confused. Then we will show them the Figure 1.

Figure 1: Onion and Iron man.

In the Figure 1, we can see an onion. Onion is a vegetable that is composed of several layers.
If you skin the outside layer of an onion, the remaining part is still a complete onion that has
the same shape. Another example is the ironman from the film “Iron Man”. Ironman is a
superman that can fly and fight, actually he is a man named Tony Stark who is wearing a suit
of armor.

Figure 2: the Man and IronMan class.

In figure 2, we defined a Java superclass named Man and a derived subclass named IronMan.
Now if we create an IronMan object, then there is also a Man object existing in it. Just like
there is always a man (Tony Stark) existing in the ironman.

The second method is being humorous in class. In a certain sense, studying is hard and boring.
If a student has listened to the lectures for a long time, he or she will fail to concentrate more
on the work. Therefore, it will be helpful if we can attract the students’ attention by saying
something funny now and then. For example, logical operators are used to combine two
boolean operands together and there are three logical operators: && (AND), || (OR) and ^
(XOR). Figure 3 demonstrates the truth tables of these operators.

Figure 3: Truth tables of three logical operators.

It is obviously that these tables are boring and hard to remember, so we can show them in
another way. Figure 4 is a picture we found on the Internet, it is named as “boolean hair
logic”, which means the result hair of A and B’s logical operators. For example, B has a
moustache while A hasn’t, therefore, A && B doesn’t have one.

Figure 4: Boolean hair logic.

The exercises

As we know, learning by doing is probably the best way to get familiar with a new
programming language. The after-class exercises of this course include two parts: weekly
assignments and a programming project.

In each week, we will have a three-hour lecture that covers one of the course topics. After
that, the students are required to finish weekly assignments which are generally two or three
programming problems. The purpose of these assignments is to help the students review what
they have learned in class.

The most important part of the after-class exercises is a programming project. The students
are required to write a complete program (generally a computer game) using Java
individually. In such a project, all the technologies learnt in classroom (classes, exceptions,
GUI, multi-threading, network programming, etc.) are used and combined together.

Figure 5: A general architecture of Java GUI games.

For a typical computer game, animation is the core foundation of the whole system. Lots of
things are moving such as tanks, planes, guns, etc. However it is not easy to implement GUI
animation especially for beginners. In Figure 5, we proposed a general architecture of Java
GUI games, with which the students can realize any kind of GUI animation they want.

Typically there are two types of moving in a computer game, one is called self-driven, which
means that type of object will move by itself. This can be implemented with Thread or Timer
class in Java. The other moving is caused by user’s movements such as pressing a keyboard
key or a mouse button. This can be implemented with the event model. Both types of moving
will lead to the value changes of the data structures in memory. And there is an independent
painting module (generally the painComponent() function of the JPanel class) that is
responsible for refreshing the screen.

Figure 6: Games written by students.

During the past semesters, the students have written different types of computer games such
as Snake, Tetris, Battle City, etc., which is demonstrated in Figure 6.

Conclusion

We began to teach this course 6 years ago and about 720 students were enrolled totally.
These students were from different majors and they only had basic programming experience
before taking this course. The examination results and the programs they wrote indicate that
they achieved major improvements after the course was over.

The grading policy of the course is: weekly assignments (30%), programming project (40%),
final exam (25%) and class participation (5%).

Figure 7: students’ grades in the last semester.

Last semester, 40 students were enrolled in the course, and Figure 7 shows their final grades.
23 students (57%) got A or A- and 15 students (37%) got B+ or B. On the other hand, there
was one student who failed the course. The reason is he didn’t complete the programming
project before the deadline.

References

Shi K. L., Chen W. J., Zhang L. and Luo L. J. (2012). Kaleidia: A Practical E-Learning

Platform for Computer Programming Courses. In Proceedings of the Canada Interna-
tional Conference on Education (CICE-2012), June 18, 2012, University of Guelph,
Canada.

Contact email: cwj@tsinghua.edu.cn
	

