
Teaching Strategies Guidelines to Foster the Computational Thinking Ability in
Higher Education

Virawan Amnouychokanant, King Mongkut's University of Technology Thonburi,
Thailand

Surapon Boonlue, King Mongkut's University of Technology Thonburi, Thailand
Saranya Chuathong, King Mongkut's University of Technology Thonburi, Thailand
Kuntida Thamwipat, King Mongkut's University of Technology Thonburi, Thailand

The Asian Conference on Education 2020
Official Conference Proceedings

Abstract
The purpose of this research was to identify teaching guidelines to cultivate the
computational thinking ability of higher education students. This qualitative research
study focused on seven Thai instructors from public and private institutions
(Chulalongkorn University, King Mongkut's University of Technology Thonburi,
Kasetsart University, Silpakorn University, Assumption University, and Microsoft
(Thailand) Limited). All instructors have had teaching experiences in universities for
more than five years and some always have used technologies in their classrooms to
improve learners’ computational thinking ability. Data were collected through
instructor focus group interviews. A semi-structured interview protocol was used as a
guide. From the interview, we found that three elements for teaching guidelines to
cultivate the computational thinking ability of higher education students were 1)
learners’ and instructors’ role 2) learning strategies and 3) teaching tools. The
instructor should use learner-centered teaching approaches. In classroom activities,
the instructor should be a coach who provides guidance and give powerful questions
that help the learners reflect and find a way to get the solution. Besides, this paper
gathered learning strategies and teaching tools that were often used in computational
thinking courses.

Keywords: Computational Thinking Ability, Instructors Role, Learners Role,
Learning Strategies, Teaching Guidelines, Teaching Tools

iafor
The International Academic Forum

www.iafor.org

1. Introduction

The term computational thinking (CT) has been in academic research for decades. In
2006, Jeanette Wing published the viewpoint essay “Computational Thinking” in
Communications of the ACM (Wing, 2006) and used CT to describe a set of thinking
ability that learners in all fields require to succeed (Czerkawski & Lyman, 2015).
Wing’s definition of CT ability is proper for application across multiple fields.
“Computational thinking is a way that humans solve problems; it is not trying to get
humans to think like computers” (Wing, 2006, p. 35). CT is also a key skill for
learners in the 21st century (Wing, 2016).

CT has become more important in various fields, and many countries have attempted
to integrate CT concepts in other courses (Angeli et al., 2016). For example, the UK
has carried out a set of CT courses, including computer science, information
technology, and digital literacy throughout all disciplines (Brown, Sentance, Crick, &
Humphreys, 2014). Another example is Australia, where CT training was set up as
one of the national teaching courses for making the learners familiar with using
technology to solve complex problems (Falkner, Vivian, & Falkner, 2014; Armoni,
2012). Poland has also developed computer courses for learners. The main purpose of
the development is to help learners understand and analyze the problem, use
computers to solve problems, and apply CT to their daily lives (Sysło &
Kwiatkowska, 2015).

CT is implemented in courses to train learners’ CT ability in many countries. It is
tough to imitate CT teaching methods because of the differences in the educational
systems and culture (Heintz et al., 2016). However, the key to developing CT is the
teachers who have to cultivate their students. Ministry of Education needs to train the
teachers in how to design CT learning activities so that the learners can improve their
CT systematically and apply CT to other subjects (Orvalho, 2017). Besides, CT also
enables learners to become more capable of problem-solving and helps learners
develop skills that are attractive for future employment opportunities. (Czerkawski &
Lyman, 2015). Computer science is the fast-growing job market and learners who
have the ability in coding are highly sought by employers (Dishman, 2016).

For the reasons mentioned above, the purpose of this research was to identify teaching
strategies guidelines to foster the computational thinking ability of higher education
students.

2. Background

Computational Thinking (CT) is one of the skills that can be useful not only for
learners of Computer Science but for other people. CT relates to solving problems,
designing systems, and understanding human behavior by connecting the fundamental
concepts to computer science (Wing, 2006). In the past studies, CT can be classified
into various thinking processes (Table 1), including decomposition, pattern
recognition, abstraction, algorithm design, debug and error detection, data collection,
data analysis, data representation, automation, simulation, and modeling.

Thinking processes Explanation References
Decomposition Breaking down a complex

problem or system into smaller
parts that are more manageable
and easier to understand.

Hsu, Chang, & Hung, 2018;
Curzon et al., 2014;
Kazimoglu et al., 2012

Pattern Recognition Finding the similarities or
patterns among small,
decomposed problems that can
help us solve more complex
problems more efficiently.

Hsu, Chang, & Hung, 2018;
Kazimoglu et al., 2012;
Ismail, Ngah, & Umar, 2010

Abstraction Focusing on the important
information and ignoring
unnecessary details.

Grover & Pea, 2013; Wing,
2006

Algorithm Design Creating a set of step-by-step
instructions for solving similar
problems or for performing a
task.

Mishra & Yadav, 2013;
Basu, Biswas, & Kinnebrew,
2017; Choi, Lee, & Lee,
2016

Debug and
error detection

Finding mistakes and fix them Atmatzidou & Demetriadis,
2016; Yadav et al., 2014

Data Collection Gathering and measuring
information from a variety of
sources to get a complete and
accurate picture of an area of
interest.

Rouse, 2020; Barr &
Stephenson, 2011

Data Analysis Inspecting, cleaning,
transforming, and modeling
data to discover useful
information for decision-
making.

Choi, Lee, & Lee, 2016;
Atmatzidou & Demetriadis,
2016; Angeli et al., 2016;
Magana & Silva Coutinho,
2017; Cesar et al., 2017;
Basu, Biswas, & Kinnebrew,
2017

Data Representation Organizing information in the
form of graphs, charts,
pictures, letters, symbols, and
numbers.

Stefan, Gutlerner, Born, &
Springer, 2015; Weintrop et
al., 2016; Benakli et al.,
2017

Automation Having computers execute
repetitive tasks.

Kim, Kwon, & Lee, 2014;
Forrest & Mitchell, 2016

Simulation Using a model to study the
performance of a system.

Kim, Kwon, & Lee, 2014;
Grover & Pea, 2013; Wing,
2006

Modeling Creating a model which
represents a system including
their properties.

Kim, Kwon, & Lee, 2014;
Basu, Biswas, & Kinnebrew,
2017; Barr & Stephenson,
2011

Table 1: The classification of CT

Brennan and Resnick (2012) also proposed three dimensions of CT: computational
concepts, computational practices, and computational perspectives. See Table 2.
Many instructors use programming languages to teach CT although it can be

integrated with various subjects. In facts, CT has been used in different subjects,
including mathematics (Snodgrass, Israel, & Reese, 2016; Benakli, Kostadinov,
Satyanarayana, & Singh, 2017), biology (Libeskind-Hadas & Bush, 2013; Rubinstein
& Chor, 2014), language (Evia, Sharp, & Pérez-Quiñones, 2015), computer science
(Shell & Soh, 2013; Grover, Pea, & Cooper, 2015), and programming (Bers,
Flannery, Kazakoff, & Sullivan, 2014; Wolz, Stone, Pearson, Pulimood, & Switzer,
2011).

Dimension Examples
Computational concepts Sequences

Loops
Conditionals
Events
Parallelism
Operators

Computational practices Incremental and iterative development
Testing and debugging
Remixing and reusing
Abstracting and modularizing

Computational perspectives Expressing and questioning about the
technological world

Table 2: Summary of the CT dimensions

3. Method

3.1 Participants

Seven Thai instructors were invited to take part in the focus group interview. Each
lecturer has different proficiencies: CT, coding, and learning strategy. The
information of the participants is shown in Table 3.

Gender Academic

position
Workplace Proficiency

CT Coding Learning
strategy

Male Assoc.Prof. Kasetsart University P P
Male Assoc.Prof. Assumption University P P P
Female Asst.Prof. Chulalongkorn University P
Male Asst.Prof. Silpakorn University P P P
Male Dr. Microsoft (Thailand)

Limited
P P P

Male Dr. King Mongkut's
University of Technology
Thonburi

P P P

Female Dr. Thai MOOC P
Table 3: The participants’ information

3.2 Instrument

A semi-structured focus group interview was designed for finding teaching strategies
guidelines to foster CT ability in higher education. Poorly worded, biased, or

awkward questions can derail a focus group interview and spoil the quality of data.
On the other hand, asking good questions makes powerful information so the focus
group interview consisted of six open-ended questions which each of them did not ask
dichotomous questions (yes or no) and use “think back” questions for taking
participants back to their experience. IOC of each item was 0.67 and 1.00 (See Table
4).

Items IOC
1. What is the role of the instructors in
the CT course in higher education?

1.00

2. What is the role of the learners in the
CT course in higher education?

1.00

3. Studying in groups, pair, or individual:
which way is better to enhance CT?

0.67

4. Which way is better to divide learners
into groups (random, up to learners, or
different performance-based)?

0.67

5. What learning strategies can be applied
for the development of CT in higher
education?

1.00

6. What teaching tools can be used to
improve CT of learners?

1.00

Table 4: IOC of each item

3.3 Procedure

We divided the procedure of Focus Group Discussion (FGD) into three parts: Before
conducting FGD, During FGD, and After FGD.

3.3.1 Before conducting FGD

We designed the opened-ended questions for FGD and reserved the meeting room.
After we set the location, date, and time, we sent the invitation letters to experts in
computational thinking, coding, and learning strategies. The invitation letter consisted
of FGD detail such as topic, venue, date, and time. We chose the location of FGD that
is in a convenient place for all participants. We set the duration of the focus group
interview one and a half hours. If the FGD is shorter than 60 minutes, it is often
difficult to fully explore the discussion topic. If the FGD is longer than 90 minutes,
the discussion can become unproductive (as participants get weary).

3.3.2 During FGD

After welcome all participants, we asked them for permission to record the audio
during the discussion. One of the researchers was a moderator and the others are note-
takers. The moderator allowed all participants to express their opinions and
experiences. If someone had given a general answer, the moderator would have asked
them to specify by giving an example.

3.3.3 After FGD

Transcribe the audio recorded on the smartphone, cutting out anything unnecessary.
Enter the answers to each question into a spreadsheet and begin to analyze the data by
organizing the responses into categories. We wrote a report by outlining the major
findings and conclusions, as well as the recommendations of participants.

4. Results

From FGD, it can be summarized into various issues to prepare in teaching strategies
guidelines to foster the computational thinking ability in higher education.

4.1 The role of the instructors in the CT course in higher education

4.1.1 Knowledge and understanding of CT teaching

The instructors should have experience, expertise, and understanding of CT teaching.
Learners can learn from the material at any time, so they are less dependent on the
instructor. Teaching materials help learners to learn better. The instructors should act
as a coach or facilitator, need not tell everything about the solution, so that learners
can solve problems by themselves, leads to systematic thinking. The instructors
should connect real-world problems with CT teaching so that learners can understand
and apply CT to their real-life more easily. The instructors need to know the different
learning styles of learners from several ways such as observation, interview, and
questionnaire to properly organize teaching activities.

4.1.2 Preparation and development for CT teaching

CT Training is crucial for CT development. The instructors should realize the
importance of CT and always would like to develop themselves to learn new things.
Educational institutions should provide CT training for instructors to apply ideas and
create new CT instructional materials, which help the teaching and learning to be
quality and to increase the interest of learners. With regular CT training, instructors
can develop their ability to design learning to enable learners to develop CT
sustainably. When learners cannot solve the problems or follow some steps of the
process, the instructor must diagnose and guide the way to solve problems. These are
the reasons why the instructors must practice or train about CT before teaching.

4.2 The role of the learners in the CT course in higher education

Developing CT ability does not depend on only the instructors but also cooperation
from the learners. From FGD, it can be concluded that learners’ role in the CT course
is to be keen on what they are being taught. The learners need to be active participants
in virtually everything that happens in the CT classroom. Learners can help their
instructors make decisions such as how a lesson will be delivered or even what is
taught. The learners should take responsibility for what is learned and be accountable
for the results of the learning process. Their responsibility is demonstrated in their
choices and actions, which could lead them to their goal or astray. Therefore, learners
should be responsible for everything they are tasked to do by their instructors and
attempt to contribute to the CT learning process. Besides, learners should help each

other while working to achieve common learning goals. The learners should find
passion in their project or assignment to exceed expectations. Not necessarily go over-
the-top, but be able to apply their ability, ask questions, and understand the
importance of CT. And most importantly, learners should learn to understand CT and
find ways to apply what they have learned in CT class in their daily life, not
memorize the CT theory or concept to pass the examinations. To make CT learning
effective, learners should make sure they inquire more about particular issues,
especially when they feel they need to know more or haven’t fully understood.

4.3 Studying in groups, pair, or individual: which way is better to enhance CT?

The instructors need to know the characteristics of the learners (previous experiences
of the learners, personal learning styles, cognitive abilities of the learners, personality,
aptitude, or intelligence of learners) before choosing the method (studying in groups,
pair, or individual). For example, the learners in Mathematics-Science Program can
learn by themselves so they like to learn individually while the learners in Language-
Arts Program like to learn in a group. Besides, the instructors should pair high and
low performers; the learners can learn from their friends. If the instructors would like
to group the learners, do not make them more than five people per group because
excessive group members can make group work inefficient. The optimal number of
members per group should be three to five people. When making the learners into the
group, the instructors should let each learner think individually about a topic or
answer and then comes back to share ideas with the whole group.

4.4 Which way is better to divide learners into groups (random, up to learners, or
different performance-based)?

Each grouping method has its own advantages and disadvantages. For example, if
learners can choose their own group, it will make them happy and feel comfortable
when working together. On the contrary, high performers will be in the same group.
This may make low performers be ignored.

Random Grouping Strategies is a method of teaming learners when grouping is not
dependent on factors such as achievement levels or common objectives. This method
may make learners excited about member in group, but this method is no clear
standard and criteria for grouping.

Different performance-based grouping (high, medium, and low) is reasonable method
because it creates learners helping each other within the group to achieve the same
goal without ignoring low performers.

4.5 Learning strategies for the development of CT in higher education

Learning strategies are what learners do in their learning process to get a better
understanding of the lesson and enhance their own learning. Learning strategies are
particularly significant for CT courses because they are tools for active, self-directed
involvement, which is essential for developing CT ability. Learners need to use
learning strategies as tools to achieve their goals because everything cannot be taught
in the class, then learners have to study by themselves. Therefore, learning strategies
help learners to study with or without instructors effectively. From FGD, we list the

learning strategies that the instructors have been used for the development of CT. The
advantages and disadvantages of each learning strategy are shown in Table 5.

One instructor explained why the instructors should not deliver CT content by using a
single method (learners are passively listening):

“When the lecturers read a pre-prepared script with little or no scope for interaction, it
makes learners less eager to study. Passively listening to a lecture can be useful at
encouraging learning to remember and understand but is not good at encouraging
higher-level skills like apply, analyze, and evaluate.”

It can be assumed that ‘Delivery mode’ lectures, where students listen rather than
interact, are not good at encouraging higher-level learning and skills.

Learning strategies Advantages Disadvantages
Problem-based
learning

It is helping learners to
improve CT through a
problem scene.

Creating suitable problem
scenarios is difficult for the
instructors and it requires more
preparation time.

Project-based
learning

Complex tasks allow learners
to look at problems with CT,
asking questions, and coming
up with possible solutions for
their project.

It gives a loss of time to the
instructors. it also wastes
money to buy the supplies for
the project.

Game-based
learning

The interaction involved in
games can help learners
understand CT better.

If games are not designed
correctly, it could be a
disadvantage to the learner’s
thinking.

Inquiry-based
learning

It allows learners to develop
CT and research skills. Good
questions can open their
minds and help develop
learners into creative
thinkers.

If instructors do not absolutely
understand, they are unable to
engage with their students on a
deeper level.

Scaffolding It trains the learners to solve
problem independently and
helps the learners learn the
new knowledge.

Instructors are not trained
specifically in this method are
improbable to deliberately
allow learners to make
mistakes in the process of
learning.

Design-based
learning

It helps learners to set up
their own goals and to create
ideas to achieve them.

It is time-consuming and poses
pedagogical challenges.

Digital storytelling It can help learners practice
CT ability. Digital
storytelling empowers
learners to be confident
communicators and creators
and reach a deeper

Digital storytelling takes a lot
of time to complete the CT
project. If the learners had
known the assignment at the
beginning of the CT course so
that they would have had

understanding of the CT
curriculum.

sufficient time to prepare for
the assignment.

Because of copyright, the
learners can not show their real
ability and exert their utmost
effort only with copyright-free
materials.

Table 5: The advantages and disadvantages of each learning strategy

4.6 teaching tools for improving CT of learners

The most teaching tools which the instructors used for designing CT learning
activities were block-based programming because most instructors believed that using
block in coding can eliminate syntax error which is a barrier for learners to better
understand the main programming concepts and block-based programming is suitable
for learners who are just starting to practice coding or have little programming
experience. It is also found that Scratch is one of the most popular programming
languages to learn.

The main reasons why many instructors used Scratch to promote CT are 1. Scratch
can be used by people of all ages, including learners from elementary to high school
and adults in various settings; 2. Scratch allows users to integrate creativity in
storytelling, games, and animation. Learners can collaborate on projects and share
their projects online; and 3. Scratch is a free program so people can access and utilize
Scratch for both personal and academic use. Apart from Scratch program, it is also
having other programming tools for being applied in teaching for cultivating CT to
learners such as Alice, LEGO, and code.org (similar to Scratch), etc. Apart from
block-based programming, unplugged activities using free exercises from Code.org.
This is especially helpful in countries with limited resources, but also in developed
countries, where CT is regarded interesting, but there is a lack of resources and
experienced instructors.

The instructors also described logical thinking as an integral aspect of CT. One of
them stated:

“Whether the learners are giving each other instructions in unplugged activity or
creating a game in block-based programming, they are doing it in logical steps and
through logical thinking. It makes them more logical for decision-making and
problem-solving.”

5. Discussion

This study is conducted to better understand the teaching strategies guidelines to
foster computational thinking ability in higher education. The results show that
developing CT ability does not depend on only the instructors but also cooperation
from the learners, the instructors should have an understanding of CT teaching and
they need to practice or train about CT before teaching. They should also connect
real-world problems with CT teaching so that students can understand and apply CT
to their real-life more easily. In the same way, the learners should be responsible for

everything they are tasked to do by their instructors and attempt to contribute to the
CT learning process.

Supportively, results from the past studies reported that the most frequently suggested
method for improving CT ability is using real-world problems (Berikan & Özdemir,
2020). It is helping learners to set their own learning goals through a problem in their
real-life. Learners will explore the solution by themselves and report their own
conclusions to the team. Using real-world problems is not only used to solve problems
but also to enhance learners’ understanding of computational thinking through
appropriate questions (Wood, 2003).

6. Limitations and future studies

Both instructors and students are crucial for CT development. This study collects the
instructors’ perspectives that may reflect only one side of view. As we work to fill in
gaps in understanding and design class activities for our students, future studies
should also collect students’ views because learners’ voices are a powerful tool for
CT development.

7. Conclusion

The Focus Group Discussion (FGD) was carried out with seven Thai instructors. The
purpose of FGD was to identify teaching strategies guidelines to foster the
computational thinking ability of higher education students. A 6-item semi-structured
focus group interview was developed and validated. From FGD, it can be summarized
into various issues, including the role of the instructors and the learners in the CT
course in higher education. The instructors should have an understanding of CT
teaching and practice or train about CT before teaching while the learners should be
responsible for everything they are tasked to do by their instructors and attempt to
contribute to the CT learning process.

This study gathers the learning strategies (advantages and disadvantages) for the
development of CT in higher education, including problem-based learning, project-
based learning, game-based learning, inquiry-based learning, scaffolding, design-
based learning, and digital storytelling. FGD also suggests that using block-based
programming is useful for learners who are just starting to practice coding or have
little programming experience. Besides, using block in coding can eliminate syntax
error which is a barrier for learners to better understand the main programming
concepts.

Acknowledgements

The authors would like to express sincere thanks to Petchra Pra Jom Klao Ph.D.
Research Scholarship for supporting the expense of research.

References

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., et al. (2016). A
K-6 computational thinking curriculum framework: Implications for teacher
knowledge. Educational Technology & Society, 19(3), 47-58.

Armoni, M. (2012). Teaching CS in kindergarten: How early can the pipeline begin?
ACM Inroads, 3(4), 18-19.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students' computational
thinking skills through educational robotics: A study on age and gender relevant
differences. Robotics and Autonomous Systems, 75, 661-670.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
involved and what is the role of the computer science education community? Acm
Inroads, 2(1), 48-54.

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive
scaffolding in a computational thinking-based science learning environment. User
Modeling and User-adapted Interaction, 27(1), 5-53.

Benakli, N., Kostadinov, B., Satyanarayana, A., & Singh, S. (2017). Introducing
computational thinking through hands-on projects using R with applications to
calculus, probability and data analysis. International Journal of Mathematical
Education in Science and Technology, 48(3), 393-427.

Berikan, B., & Özdemir, S. (2020). Investigating “Problem-Solving with Datasets” as
an Implementation of Computational Thinking: A Literature Review. Journal of
Educational Computing Research, 58(2), 502-534.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145-157.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Proceedings of the annual meeting of the
American educational research association, Vancouver, Canada (pp. 1-25).

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The
resurgence of computer science in UK schools. ACM Transactions on Computing
Education (TOCE), 14(2), 9.

Cesar, E., Cortés, A., Espinosa, A., Margalef, T., Moure, J. C., Sikora, A., et al.
(2017). Introducing computational thinking, parallel programming and performance
engineering in interdisciplinary studies. Journal of Parallel and Distributed
Computing, 105, 116-126.

Choi, J., Lee, Y., & Lee, E. (2016). Puzzle based algorithm learning for cultivating
computational thinking. Wireless Personal Communications, 1-15.

Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing
computational thinking in the classroom: a framework. Retrieved from
http://www.chi-med.ac.uk/publicdocs/WP259.pdf on 16 July 2019.

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring Issues About Computational
Thinking in Higher Education. TechTrends, 59, 57-65.

Dishman, L. (2016). Why Coding Is Still the Most Important Job Skill of the Future.
Retrieved from https://www.fastcompany.com/3060883/why-coding-is-the-job-skill-
of-the-future-for-everyone on 23 December 2019.

Evia, C., Sharp, M. R., & Pérez-Quiñones, M. A. (2015). Teaching structured
authoring and DITA through rhetorical and computational thinking. IEEE
Transactions on Professional Communication, 58(3), 328-343.

Falkner, K., Vivian, R., & Falkner, N. (2014, January). The Australian digital
technologies curriculum: Challenge and opportunity. Proceedings of the sixteenth
Australasian computing education conference: 148, (pp. 3-12). Australian Computer
Society, Inc.

Forrest, S., & Mitchell, M. (2016). Adaptive computation: The multidisciplinary
legacy of John H. Holland. Communications of the ACM, 59(8), 58-63.

Grover, S., & Pea, R. (2013). Computational thinking in K–12 a review of the state of
the field. Educational Researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer Science Education,
25(2), 199-237.

Heintz, F., Mannila, L., & Färnqvist, T. (2016, October). A review of models for
introducing computational thinking, computer science and computing in K-12
education. Frontiers in education conference (FIE), 2016 IEEE (pp. 1-9). IEEE.

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach
computational thinking: Suggestions based on a review of the literature. Computers &
Education, 126, 299-300.

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). The effects of mind mapping with
cooperative learning on programing performance, problem solving skill and
metacognitive knowledge among computer science students. Journal of Educational
Computing Research, 42(1), 35–61.

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning
Programming at the Computational Thinking Level via Digital Game-Play. Procedia
Computer Science, 9, 522-531.

Kim, Y. C., Kwon, D. Y., & Lee, W. G. (2014). Computational modeling and
simulation for learning an automation concept in programming course. International
Journal of Computer Theory and Engineering, 6(4), 341-345.

Libeskind-Hadas, R., & Bush, E. (2013). A first course in computing with
applications to biology. Briefings in Bioinformatics, 14(5), 610-617.

Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a
computational thinking-enabled engineering workforce. Computer Applications in
Engineering Education, 25(1), 62-78.

Mishra, P., & Yadav, A. (2013). Of art and algorithms: Rethinking technology &
creativity in the 21st century. TechTrends, 57(3), 10-14.

Orvalho, J. (2017, July). Computational thinking for teacher education.
Scratch2017BDX: Opening, inspiring, connecting (pp. 6).

Rouse, M. (2020). Data Collection. Retrieved from
https://searchcio.techtarget.com/definition/data-collection on 14 October 2020.
Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education.
PLoS Computational Biology, 10(11), e1003897.

Shell, D. F., & Soh, L. K. (2013). Profiles of motivated self-regulation in college
computer science courses: Differences in major versus required non-major courses.
Journal of Science Education and Technology, 22(6), 899-913.

Snodgrass, M. R., Israel, M., & Reese, G. C. (2016). Instructional supports for
students with disabilities in K-5 computing: Findings from a cross-case analysis.
Computers & Education, 100, 1-17.

Stefan, M. I., Gutlerner, J. L., Born, R. T., & Springer, M. (2015). The quantitative
methods boot camp: Teaching quantitative thinking and computing skills to graduate
students in the life sciences. PLoS Computational Biology, 11(4), e1004208.

Sysło, M. M., & Kwiatkowska, A. B. (2015, September). Introducing a new computer
science curriculum for all school levels in Poland. International conference on
informatics in Schools: Situation, evolution, and perspectives (pp. 141-154). Cham:
Springer.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016).
Defining computational thinking for mathematics and science classrooms. Journal of
Science Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-
35.

Wing, J. M. (2016). Computational thinking, 10 years later.
http://www.microsoft.com/enus/research/blog/computational-thinking-10-years-later.

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011).
Computational thinking and expository writing in the middle school. ACM
Transactions on Computing Education (TOCE), 11(2), 9.

Wood, D. F. (2003). ABC of learning and teaching medicine: Problem based learning.
BMJ: British Medical Journal, 326(7384), 328.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014).
Computational thinking in elementary and secondary teacher education. ACM
Transactions on Computing Education (TOCE), 14(1), 5.

