Gendered Fluency and Dysfluency: Preliminary Findings

Robert William Long, Kyushu Institute of Technology, Japan

The IAFOR International Conference on Language Learning - Dubai 2016
Official Conference Proceedings

Abstract
Over the past few decades, interest in learning English has increased in Japan due to globalization and rising test scores in other Asian countries. While grammar and reading have been dominant features of standardized tests like Eiken and TOEIC, fluency has been one issue that has been ignored in education. This preliminary study, based on 20 videotaped discussions between males and females who did not know each other previously, examines possible differences in fluency indicators, and in acoustic, lexical and syntactic dysfluency as well as with correct/incorrect pausing. Results indicated for the variable of speaking time, males spoke 20.3% more than women; in addition, there was a strong difference found in fluency rates with males having a fluency rate that was 19.8% faster than female participants. For acoustic and lexical dysfluency, no significant differences were found though the speech of males had 21.2% more silence. For syntactical dysfluency, significant differences were found in mean length runs, the number of words and meaningless syllables, with males producing up to 39.8% more speech than females. No significant differences were found concerning correct pausing and incorrect pausing though males had higher rates of incorrect pausing. Important differences in fluency were evident with females speaking less, having shorter mean length runs than males, and slower speaking rates. The findings indicate that more attention needs to be paid to interactions between males and females and more assistance given to female students to help them to be more confident and aware of their own speech.

Keywords: Gendered discourse, fluency, dysfluency, Japanese learners, awareness, proficiency

iafor
The International Academic Forum
www.iafor.org
Introduction

Tests rule in Japan. They are the first and final gates that can swing open or close to allow students access to good schools and companies; thus, it should come as no surprise that Japanese spend large sums on test preparation guides, test tutoring services, and DVDs in which to improve their scores. As a result, there is little attention, time, and energy left over for improving actual fluency and real interactive communicative competency. Over the past ten years, these interactive skills have been in a steady decline with students spending even less time with family and friends and more time with the computer (Nie & Erbring, 2010); furthermore, this issue is a world-wide problem with 39% of Americans spending more time socializing online than through face-to-face interactions (Thompson, 2012). Students report it is far more convenient to rely on social media and texting than to communicate face-to-face which requires interactive awareness, adherence to conventions and consideration of pragmatic considerations. Using social media, however, allows individuals to minimize most cultural norms, the politics of identity, turn-taking issues, dominance, and problems relating to status.

One apparent consequence of this trend has been that the younger generation has been shunning conversations, particularly with the opposite sex. As a result, relationships are rarely entered into: Reports in the media have indicated that 45% of Japanese women aged 16-24 are not interested in any intimate relationships while more than a quarter of men feel the same way. This social phenomenon, referred to as sekusu shinai shokogun or celibacy syndrome, has become so severe that the number of single Japanese has reached a record high. A survey in 2011 found that 61% of unmarried men and 49% of women aged 18-34 had never been in any kind of romantic relationship. Experts noted that this is an increase of almost 10% from data gathered five years earlier. While this lack of interest with conventional relationships with the opposite sex may appear to be just a social and interpersonal shortcoming of Japanese culture with younger people (under 40), Aoyama (2014) says the sexes, especially in Japan's giant cities, are "spiraling away from each other” (p. 40).

The failure of genders to interact and relate with one another is actually part of a looming national catastrophe as Japan has one of the world’s lowest birth rates. In short, while education in Japan has succeeded in helping students to master English grammatical issues, and decode meaning, it has done little to address the problem of helping students to achieve actual communicative competency, specifically helping students to overcome their fear of initiating and sustaining a conversation. When it comes to the opposite sex, Japanese high school and university students are simply
ill-equipped in asking appropriate and intriguing questions, making relevant and stimulating comments, paying compliments or having the confidence to propose follow-up meetings.

The aim of this paper is to present preliminary data on the L2 speech in *gendered* speech. Interactions with male-female pairs were videotaped and transcribed so as to identify distinctive similarities and characteristics in the fluency and dysfluency. This paper, which examines fluency indicators as time talking, articulation rates, and speaking rates, tries to identify if there are also patterns of dysfluency in order to see which gender, if any, exhibits the most dysfluency. The study will also take into account rates of correct and incorrect pausing. By better understanding the patterns relating to fluency/dysfluency and how it impacts overall communicative competency, educators can be more aware of how to structure and facilitate interactions between the genders in their own classrooms.

Review of Literature

Gender issues and dysfluency

Gender is considered an important variable in investigating spoken language and fluency insofar that by simply hearing the pitch of person’s voice, listeners will often make assumptions, expectations, and stereotypes that can influence how the discussion is framed, and impact decision-making. The listener can also be influenced by the speaker’s intonation, resonance, speaking speed, among other variables. As West & Zimmerman (1983) point out, gender is a powerful ideological device, which can affect how a person produces and shapes content, as well as the degree of making and legitimizing certain discourse choices. Molm (1992, p. 303) notes “gender inequality is conceptualized as multidimensional, and theories span historical eras, societal types and multiple causation” and one aspect of this inequality is that of aggression in discourse.

These generalized expectations for sex differences are an important characteristic as it can lead to stereotypes of women and men. With the stereotypes functioning to create and maintain group ideologies, social actions or reinforcing cultural and value-laden norms are justified (Taifel, 1981). The degree of collaboration, which occurs in gendered discourse, is affected by these psycho-social values. Coates, (1996) reveals that a great deal of collaboration is needed in gendered discourse with each speaker paying close attention to the other, at all linguistic levels, through joint constructions involving simultaneous speech, sharing in search for the right word, and overlapping speech.
As for gendered L2 speech, expectations and stereotypes can easily be changed by having one of the participants being far more fluent, productive, and competent in his or her L2 use.

A second characteristic concerns the interactive balance in a discourse. Fishman's (1978, p. 138) research on casual conversations found an asymmetrical "division of labor" in talk between heterosexual intimates: “Women had to ask more questions, fill more silences, and use more attention-getting beginnings in order to be heard . . . Some occasions are organized to routinely display and celebrate behaviors that are conventionally linked to one or the other sex category.” Similar data may differ, however, with Japanese participants and L2 speech due to cultural norms. Research by Zimmerman and West (1975) showed patterns of silence that occurred because of a delayed minimal response by the male, an overlap by the male, and by an interruption by the male; however, it remains to be seen how minimal responses, silence, or excessive talking, for example, function in Japanese-centered, gendered L2 discourse. The issue of excessive mean length runs from males and patterns of silence from females needs to be further explored.

The Study

Rationale

Fluency research has focused on three dimensions: complexity, accuracy, and fluency CAF (Skehan, 1998; Ellis, 2003, 2008; Ellis and Barkuizen, 2005), yet one other dimension seems to have been ignored or misunderstood, that of production, which refers to not only how long a speaker can talk but also how articulate, credible and convincing he or she appears in any interaction. The literature is also still incomplete with regard to characterizing the specific nature of dysfluency between the genders, particularly in regard to Japanese learners. The question remains as to what specific differences exist (if at all) in fluency, dysfluency, and L2 production between Japanese speakers speaking in English. Does fluency or dysfluency differ significantly between the genders with one sex exhibiting more fluency and less dysfluency than the other? Which gender is more productive? Furthermore, while research on minimal responses is mixed, it seems that women use them more often than men, but is this necessarily the case with Japanese men and women? Is the variable of familiarity even an issue? Pause location is also a salient variable in regard to fluency; empirical researchers who were examining pause locations found that the syntactic location of pauses is a very strong indicator of fluency (Freed, 1995).
As discourse is a powerful ideological tool that can highlight, reproduce, or limit the opportunities for women, it is important to see if certain patterns can be identified in fluency, dysfluency and pausing in gendered speech.

Definition of Terms

Fluency variables. For this study fluency is evaluated with through the speaker’s *articulation rate* (AR), which is computed by dividing the number of syllables by the cumulative time talking after deducting the amount for pausing. The *speech rate* (SR) differs in that it assesses the number of meaningful syllables within a narrative; this number is then divided by the number of seconds used to complete the task and multiplied by 60. Thus, this provides the fluency rate of A as identified by Wendel (1997), whereby the fluency rate of B shows data in which all meaningless syllables, words, phrases that were repeated, reformulated, or replaced are excluded. A fluency differential could then be included which reflects the difference between both fluency rates to better understand the extent of a participant’s dysfluency. *Mean length runs* (MLR) involve the number of syllables that are uttered until the speaker stops talking or pauses. *Pauses* are defined as any silence lasting two seconds or more so not to be confused with natural hesitation phenomena, which are normal features of most discourse. Thus, it is important to differentiate actual silence (which is often seen as a sign of dysfluency) from breathing space, or semantic hesitation at clause junctures, or even from lexical/morphological uncertainty. Pauses, which were less than two seconds, were counted as micropauses.

Dysfluency variables. Acoustic dysfluency was analyzed by examining micropauses, which were defined as any pause lasting less than 2.0 seconds. This helps to better differentiate actual pausing from slight rhythmic hesitations, and other variables like cross-talk pausing, the amount of silence, the percentage of silence, and mean length of pauses. Lexical dysfluency is based on the number of mispronounced words, word fragments, and the use of L1. The use of Japanese (L1) is another variable for this study, and as this study is focused on L2, any use of L1 (Japanese) was not considered as part of the data except when it was referring to the names of people and places or referred to words that had been absorbed into the language such as karate or aikido. Syntactic dysfluency takes into account abandoned sentences, retracing, repetition, average mean length runs, the number of words, and meaningless syllables (which did not include word fragments). Repetition included only actual words and not filled pauses whereas retracings represented reformulations and partial repetitions of previous phrases or clauses.
Research questions

This study seeks to identify distinctive similarities and characteristics in the dysfluency in gendered speech of seven males and six females who tested at a lower level of proficiency, as designated by standardized test scores such as TOEFL, EIKEN, IELTS, TOEIC scores, see table 1.

Table 1

Scores for Lower Proficiency Students

<table>
<thead>
<tr>
<th>TOEIC</th>
<th>Eiken</th>
<th>IELTS</th>
<th>TOEFL IBT</th>
<th>TOEFL ITP</th>
<th>TOEFL PBT</th>
<th>TOEFL CBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>440 – 550</td>
<td>2 級</td>
<td>3.0 – 4.0</td>
<td>42 – 55</td>
<td>272 – 450</td>
<td>463 – 480</td>
<td>143 - 157</td>
</tr>
</tbody>
</table>

The research questions are as follows:
1. Is there a significant difference in fluency indicators of time talking, articulation rates, and speaking rate between the two genders?
2. Is there a significant difference in acoustic dysfluency (micropauses, amount of silence, mean length runs), lexical dysfluency (mispronounced words, word fragments, use of L1), and syntactic dysfluency indicators (abandoned sentences, retracing, repetition, average mean length runs, total syllables, number of words, meaningless syllables) in gendered and same-sex speech?
3. Is there a significant difference in correct and incorrect pausing between the two genders? Which gender, if any, had more incorrect pausing?
4. Is there more dysfluency noted with males or females?

Hypotheses

The hypotheses for this TOEFL range in regards to both fluency and dysfluency are as follows:
1. There will be no significant differences in fluency indicators noted in either gender.
2. There will be no significant differences in acoustic, lexical and syntactical dysfluency, as well as correct/incorrect pausing between the two genders.

Procedures

Two groups of students were selected based on their test scores (see table 1). All of the participants had to be unfamiliar with each other, for as Coates (1996) notes discourse between intimates is most likely to be more fluent. There is often less dysfluency when both participants are known to each other, as there are fewer
threatening issues, and the status between the two has been firmly established. By having gendered discourse between two strangers, issues relating to ease, politeness, silence, status, and pragmatics can be effectively evaluated as well as issues relating to fluency and dysfluency. Such discourse also helps in clarifying issues related to *dominance* and *subordination* and a better understanding how social distance is bridged.

Four participants, two females and two males, were then selected based on their test scores and with the acknowledgement that they did not know the other people in their group. Discussions, which ranged from 6 minutes to 15 minutes were videotaped; two gendered discussions took place simultaneously in different rooms after which when these discussions finished, the two males would then change rooms and two more gendered discussions would take place. Finally, participants would then change rooms for the third time, and two same-sex discussions would take place. These videotaped discussions were then uploaded to Youtube, see notes.

Discussion format

In order to avoid problems relating to conversational management or competency, the interview format, based on information gather, shared interests, and cognitive loading (see Appendix A) gave students three topics from which they could talk from. The first topic allowed students to gather information, the second focused on issues or interests they had in common whereas the third prompt asked them to discuss a social issue. If students finished the three topics before the time allotted, they could move on to the next three on the list.

Subjects

The 13 participants for this study were drawn from two major universities in Kitakyushu, one being a municipal university and the other a national university. All students had lived in Japan and had limited study abroad experiences.

Transcripts

The 20 transcripts were manually transcribed, beginning in July through October, 2015. The videos, which are located on Youtube,\(^1\) totaled over 3 hours (218.4 minutes) with videos, averaging 10:09 minutes and they ranged in length from 6:23 to 14:59 minutes. The transcripts\(^2\) for this study were made from various sessions in order to provide enough reliable data of students’ fluency and dysfluency.
Data Analysis
Data related to fluency and dysfluency was analyzed with Excel and the statistical software WINKS-SDA 7 to conduct t-tests. Descriptive data were also compared.

Results
In regard to the first hypothesis, that there will be no significant differences in fluency between genders, was found to be false as a t-test for the two genders revealed some low significance at \(t(38) = 1.8, p < 0.08 \) for the variable of speaking time. However, for other fluency constructs, a strong significance was noted for articulation, \(t(38) = 2.76, p < 0.009 \), speaking rate A, \(t(38) = 2.77, p < 0.009 \), speaking rate B, \(t(38) = 2.67, p < 0.011 \), see table 2 below concerning descriptive data. For speaking time, males spoke 20.3% more than women whereas, with fluency rates A and B (Wendel, 1997), males had a fluency rate that was 19.8% higher than female participants.
Table 2
Descriptive Data for Gender Dysfluency

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaking Time</td>
<td>328.47</td>
<td>267.78</td>
</tr>
<tr>
<td>Articulation rate</td>
<td>1.965</td>
<td>1.595</td>
</tr>
<tr>
<td>Speaking Rate A</td>
<td>121.17</td>
<td>99.19</td>
</tr>
<tr>
<td>Speaking Rate B</td>
<td>110.99</td>
<td>91.25</td>
</tr>
<tr>
<td>Acoustic Dysfluency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micropauses</td>
<td>6.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Amount of silence</td>
<td>25.5</td>
<td>20.68</td>
</tr>
<tr>
<td>Mean Length of pauses</td>
<td>3.97</td>
<td>3.07</td>
</tr>
<tr>
<td>Lexical Dysfluency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mispronounced Words</td>
<td>1.1</td>
<td>0.35</td>
</tr>
<tr>
<td>Word fragments</td>
<td>1.65</td>
<td>1.2</td>
</tr>
<tr>
<td>Use of L1</td>
<td>1.95</td>
<td>2.7</td>
</tr>
<tr>
<td>Syntactic Dysfluency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abandoned sentences</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Retracing</td>
<td>3.2</td>
<td>1.35</td>
</tr>
<tr>
<td>Repetition</td>
<td>12.55</td>
<td>13.15</td>
</tr>
<tr>
<td>Average Mean Length Runs</td>
<td>12.025</td>
<td>8.2</td>
</tr>
<tr>
<td>Total Syllables</td>
<td>622.6</td>
<td>431.6</td>
</tr>
<tr>
<td>Number of Words</td>
<td>458.55</td>
<td>306.05</td>
</tr>
<tr>
<td>Meaningless Syllables</td>
<td>57</td>
<td>36.2</td>
</tr>
</tbody>
</table>

Note: Data is shown in averages.

Concerning acoustic dysfluency, the hypothesis was true as no significance was noted for micropauses, $t(38) = .52$, $p < 0.603$, amount of silence, $t(38) = .57$, $p < 0.574$, mean length of pauses, $t(38) = 1.41$, $p < 0.167$. In comparing the genders in regard to silence, the speech of males had 20.8% more silence. For lexical dysfluency, some significance was also noted for mispronounced words $t(29.5) = 1.98$, $p < 0.057$, but none for word fragments, $t(38) = .93$, $p < 0.36$, or for the use of L1 $t(31.3) = -.74$, $p < 0.464$. As for syntactical dysfluency, high significance was noted for retracing, $t(31.1)$
= 2.91, p < 0.007, being evident in male speech more than twice as much, average mean length runs \(t(32.8) = 3.05, p < 0.004 \), number of words \(t(38) = 3.03, p < 0.004 \) and for meaningful syllables \(t(38) = 2.15, p < 0.038 \). No significance was noted for repetition, \(t(38) = -0.14, p < 0.888 \). Finally, concerning pause location, we can see from table 5, that males paused correctly 29.7% more than females, due to the longer mean length runs, but that incorrect pausing also was 35.4% higher than with females, see table 3.

Table 3
Descriptive Data for Pause Location

<table>
<thead>
<tr>
<th>Transcripts</th>
<th>Correct</th>
<th>Incorrect</th>
<th>Correct</th>
<th>Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Female</td>
<td>2</td>
<td>3</td>
<td>Male</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>0</td>
<td>2</td>
<td>Male</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>0</td>
<td>0</td>
<td>Male</td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>1</td>
<td>1</td>
<td>Male</td>
</tr>
<tr>
<td>8</td>
<td>Female</td>
<td>1</td>
<td>3</td>
<td>Male</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>1</td>
<td>3</td>
<td>Male</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>0</td>
<td>1</td>
<td>Male</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>0</td>
<td>4</td>
<td>Male</td>
</tr>
<tr>
<td>11</td>
<td>Female</td>
<td>0</td>
<td>0</td>
<td>Male</td>
</tr>
<tr>
<td>13</td>
<td>Female</td>
<td>0</td>
<td>0</td>
<td>Male</td>
</tr>
<tr>
<td>14</td>
<td>Female</td>
<td>1</td>
<td>9</td>
<td>Male</td>
</tr>
<tr>
<td>18</td>
<td>Female</td>
<td>1</td>
<td>3</td>
<td>Male</td>
</tr>
<tr>
<td>21</td>
<td>Female</td>
<td>0</td>
<td>5</td>
<td>Male</td>
</tr>
<tr>
<td>22</td>
<td>Female</td>
<td>0</td>
<td>0</td>
<td>Male</td>
</tr>
<tr>
<td>23</td>
<td>Female</td>
<td>0</td>
<td>0</td>
<td>Male</td>
</tr>
<tr>
<td>24</td>
<td>Female</td>
<td>1</td>
<td>2</td>
<td>Male</td>
</tr>
<tr>
<td>25</td>
<td>Female</td>
<td>1</td>
<td>2</td>
<td>Male</td>
</tr>
<tr>
<td>26</td>
<td>Female</td>
<td>1</td>
<td>1</td>
<td>Male</td>
</tr>
<tr>
<td>27</td>
<td>Female</td>
<td>8</td>
<td>12</td>
<td>Male</td>
</tr>
<tr>
<td>28</td>
<td>Female</td>
<td>2</td>
<td>7</td>
<td>Male</td>
</tr>
<tr>
<td>Totals</td>
<td>20</td>
<td>58</td>
<td>27</td>
<td>83</td>
</tr>
</tbody>
</table>
Discussion
In regard to male’s dominating in speaking time, a typical interaction, as seen in session 7, male 2 to female 2 [transcript #22], reveals the widespread tendency for males to hold the floor.

1. **F2**: Yeah, I watch, I watched “Baymax” last month.
2. **M2**: Last month? Ah:
3. **F2**: In English.
4. **M2**: Ok↓. In my cases that, ah, my (.) classes, ah: now I’m↑ studying English in this university, and, ah, my hobby is a lot. For example, ah, traveling some countries or (.) um, even↑ now in Japan, I like visiting everywhere. So, ah: (.)
5. let’s see, my, (.) my preference, umm: (.)yeah, I just like, ah, yeah↑, in my case I like↑ watching movie, too. And, ah, listening music both Japanese and, ah,
6. English one. Yeah↓, (.) and, ah. Ok, go on the next topic. The (2.6)↑ discuss question how are you both difference, ok↓. Let’s talk about, ah: our difference.
7. Each differences, ok↑? What do you think about it, our, ah, difference considering, the, our, discuss, (.) before heh?
8. **F2**: What do you mean heh?
9. **M2**: Yeah, you know the, this is the, first met for us, so(.) yeah, maybe the,
10. there are few↑, there are few↑ information about (3.9) Through our talking, ah,
11. did you find some different?
12. **F2**: Different↓(.) Ah…
13. **M2**: Between you and me, yeah.
14. **F2**: I don’t talk that much, but you’re talkative.
15. **M2**: Oh, really↑? Yeah, maybe yeah. I’m very talkative person. But, ah, I think, ah, you are not shy. And, ah, sometimes talkative is not good, right?

However, it would be an oversimplification to say that because males hold the floor more by talking longer than females, that they then control the interaction. It is key to look at the inner dynamics of the interaction, and by examining question frequency, it is possible to see which speaker is, at least, more motivated in gaining information. In examining question formation, the data shows that in six of the 14 categories for question types that males asked more questions; in total, males asked 45.6% more questions than female speakers, see table 4.
<table>
<thead>
<tr>
<th>Question type</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>What</td>
<td>57</td>
<td>38</td>
</tr>
<tr>
<td>Which</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Why</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>When</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Where</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>How</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Do</td>
<td>76</td>
<td>52</td>
</tr>
<tr>
<td>Is</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Are</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Can</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Have</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Confirm</td>
<td>50</td>
<td>41</td>
</tr>
<tr>
<td>Other / tag questions</td>
<td>105</td>
<td>58</td>
</tr>
</tbody>
</table>

Total 374 235

The data also shows that males talked faster either reflecting more motivation than the females exhibited, yet from examining the videos themselves, this fact is not easily apparent. When examining syntactical dysfluency, the difference in mean length runs is also not easily evident from watching the video recordings, yet when comparing the textual data, it is clear that women tend to pause more frequently. With all of the participants, it should be noted that there was little acoustic dysfluency in either gender, and with syntactical dysfluency, the only important differences again relate to production, with males producing 39.8% more speech than women. Tannen (1984; 1990) states that lecturing is part of a male’s conversational style and that women let them get away with it insofar that the style of most women is to listen attentively and not to interrupt or to deflect the listener. Tannen goes on to argue that when women and men interact in mixed-sex groups, men’s norms prevail. Women adjust to them, and it is this aspect that tends to give the appearance of male dominance.
The indirect speech and minimal responses of the women in this data may be the result of various cultural factors, but a comparison with other students from foreign countries would bear this out. The data also did reflect some conversational dominance on the part of the males due to an interactive imbalance, which was accentuated by passivity and unawareness. Stylistic differences—politeness, hesitancy, and nonassertion—are seen from the transcripts as being influenced by gender, but to a small degree. In short, gender is an important ideological factor in Japanese L2 discourse insofar that those who talk the longest will have the most impact in framing discussions, clarifying ideas and values.

Conclusion
The results of this preliminary study indicate that gender differences are found only with syntactic dysfluency, and with the production of speech, articulation rate, and speech rate. Minimal responses tend to be a constant feature of both male and female speech in the data, but more so with female discourse. These minimal responses may be traced to cultural norms or to a degree of passivity. Thus, educators should help students to better initiate and maintain discourse through more effective strategic competency.

It should be noted that the issue of truly understanding one’s fluency and dysfluency comes only through examining videotapes of one’s speech, and (if time allows) transcription and analysis. Gains in fluency are hard to come by, but more so when there is little to no awareness of how poor one’s fluency actually is and what needs to be addressed to make real progress.

Finally, the results also show that there may be fewer differences in typical male and female speech, particularly in regard to dysfluency, which confirms the notion that gendered speech should be revisited, from “gender difference to the difference gender makes” as Cameron (1992) notes. Thus, it is important to account for more complex patterns in gendered speech as it is found between strangers, acquaintances, close associates, and even in group settings so as to examine how issues such as balance, cooperativeness, solidarity might change, and how fluency and dysfluency are affected.
Notes
1. Gender Discourse Playlist: https://www.youtube.com/playlist?list=PLPRLY1xK6EnyL7w6auVV4nvQODZ4T_GiT

2. Gender videos, transcripts, and analysis are available at genderfluency.com

Acknowledgements
This research is supported by the Grant-in-Aid for Scientific Research (KAKENHI) of the Ministry of Education, Culture, Sports, Science, and Technology in Japan (No. 15K02788). I also want to thank Jose Cruz, a lecturer at Kitakyushu City University for his help in video and audio recording.
References

Contact email: long@dhs.kyutech.ac.jp
Appendix A

Interview Prompts (Abridged)

MF Interactions
Set 1. A. Share information about classes, hobbies, preferences
 Information-gathering
 B. Discuss the question: how are you both different?
Shared interests
 C. Compare schedules. Who is busier?
 Cognitive loading

Set 2. A. Share as much information about family, friends, major
 Information-gathering
 B. Discuss the question: what do you both have in common
Shared interests
 C. Compare parents. Whose parents are stricter?
 Cognitive loading

Set 3. A. Share information about your activities, books, movies
 Information-gathering
 B. Discuss the question: What kind of food do you both dislike
Shared interests
 C. Compare personalities. Who is more social and outgoing?
 Cognitive loading

MM – FF interactions
Set 1. A. Share information about what you like to buy this year
 Information-gathering
 B. Discuss the question: do you buy similar items and products?
Shared interests
 C. Compare viewing habits. Who has watched more anime?
 Cognitive loading

Set 2. A. Share 3 events you have heard on the news
 Information-gathering
 B. Discuss the question: what do like watching on TV?
Shared interests
 C. Compare viewing habits. Who watches more TV?
Cognitive loading

Set 3. A. Share information about sports you like or have done
 Information-gathering
 B. Discuss the question: What kind of sports are the dullest?
 Shared interests
 C. Compare personalities. Who is more active?
 Cognitive loading