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Abstract 
This paper explores the application of canonical gradient analysis to evaluate and 
visualize student performance and acceptance of a learning system platform. The 
subject of evaluation is a first year BSc module for computer programming. This uses 
‘Ceebot’, an animated and immersive game-like development environment. 
Multivariate ordination approaches are widely used in ecology to explore species 
distribution along environmental gradients. Environmental factors are represented 
here by three ‘assessment’ gradients; one for the overall module mark and two 
independent tests of programming knowledge and skill. Response data included 
Lickert expressions for behavioural, acceptance and opinion traits. Behavioural 
characteristics (such as attendance, collaboration and independent study) were 
regarded to be indicative of learning activity. Acceptance and opinion factors (such as 
perceived enjoyment and effectiveness of Ceebot) were treated as expressions of 
motivation to engage with the learning environment. Ordination diagrams and 
summary statistics for canonical analyses suggested that logbook grades (the basis for 
module assessment) and code understanding were weakly correlated. Thus strong 
module performance was not a reliable predictor of programming ability. The three 
assessment indices were correlated with behaviours of independent study and peer 
collaboration, but were only weakly associated with attendance. Results were useful 
for informing teaching practice and suggested: (1) realigning assessments to more 
fully capture code-level skills (important in the workplace); (2) re-evaluating 
attendance-based elements of module design; and (3) the overall merit of multivariate 
canonical gradient approaches for evaluating and visualizing the effectiveness of a 
learning system platform. 
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1 Introduction 
 
The two aspects of the study reported below concern: (1) the educational context, in 
this case an investigation of an approach for learning and teaching computer 
programming; and (2) the primary objective, an evaluation of a novel means for 
exploring complex data that commonly arise from such multivariate studies. 
 
Regarding the first aspect (the approach taken for introducing programming), it is 
widely accepted that students find that learning to programming is challenging and an 
obstacle to progression to later stages of higher education. The paper “Learning and 
Teaching Programming: A Review and Discussion” by Robins and co-workers (2003) 
at Otago University, clearly summarises that “Novice programmers suffer from a 
wide range of difficulties and deficits. Programming courses are generally regarded as 
difficult, and often have the highest dropout rates”. 
 
Experiences at Buckinghamshire New University, where modules in programming 
underpin computing courses, reflect the findings of Robins et al. (ibid.) and of others 
reporting student difficulties in understanding both introductory and higher level 
programming concepts (for example Milne and Rowe, 2002).  
 
Many learning and teaching applications therefore endeavour to make the subject less 
intimidating and more accessible to novice programmers through creative use of 
graphical and interactive development environments or immersive game-like 
interfaces. Widely used examples of such learning environments include: Alice 
(Cooper et al., 2000); Lego Mindstorms (Barnes, 2002); BlueJ (Kölling et al., 2003), 
Greenfoot (Henriksen & Kölling, 2004) and Scratch (Resnick et al., 2009).  
 
In this study, students use the Ceebot application, designed for learning industry-
standard C-language syntax and object-oriented principles (Huber, 2008; Maragos & 
Grigoriadou, 2005). Ceebot employs a dynamic landscape populated with robotic 
devices that may be programmed to interact with each other, ‘alien’ life and to 
perform tasks on inanimate objects (see Figure 1). 
 



  

   

 
 
Figure 1 Screen capture from Ceebot showing a small section of ‘bots’ that may be 
programmed to move, pick up objects, shoot, fly (bottom left) and draw (bottom 
right). 
 
Concerning the second aspect of research interest (the means of data analysis), the 
nature and type of data available is normally determined by the intention of research, 
the context, the research style and strategy for data collection and analysis (Cohen, 
Manion and Morrison, 2011). As with many exploratory investigations surrounding 
the efficacy and acceptance of educational environments, data sets are often 
unavoidably complex and multivariate as a consequence of response behaviours, 
potential explanatory variables and interaction effects. Moreover, in exploratory 
analyses involving questionnaire data, it may be desirable to first screen or filter 
variables for explanatory power and for collinearity or other redundancy (Cohen, 
Manion and Morrison, ibid.).  
 
Common exploratory approaches include correlation analysis (Pearson's Product 
Moment Correlation coefficient and Spearman's Rank Order Correlation coefficient). 
Although strictly concerned with bivariate relationships both are often used in 
matrices to explore patterns in multivariate data (Sokal and Rohlf, 1995). 
 
Among gradient-type tools, Principle Component Analysis (PCA) is a true 
multivariate tool that is widely used for exploratory purposes. Although a useful 
means for investigating multivariate relationships, the ordination axes describing 
variation only represent orthogonal directions in the entire data set and are not directly 
related to explanatory data (Sokal and Rohlf, ibid.). 
 
Similar to PCA, the alternative approach of Canonical Correspondence Analysis 
(CCA) has the advantage that response scores are regressed on explanatory data, so 
ordination axes are constrained to explanatory variables. Canonical gradient analysis 



  

   

techniques are widely used by the ecology scientific community. Correspondence 
analysis (CA) was pioneered by ecologists from the 1970s and found to be well suited 
to describing unimodal species distributions. Canonical Correspondence Analysis 
(CCA) was developed by ter Braak for ecological sciences (ter Braak, 1986) and is 
highly regarded by community ecologists for investigating the distribution and 
abundance of species along environmental gradients (Šmilauer and Lepš, 2014). 
 
However, CCA assumes unimodal distribution of response variables and is insensitive 
to direction of relationship. Thus this study evaluates Redundancy Analysis (RDA), 
first publicised by van den Wollenberg in 1977. RDA possesses two advantages that 
ordination axes are constrained to explanatory variables and, through applying a linear 
ordination, does not rely on assumptions of unimodality. It is, in effect, the canonical 
equivalent of PCA (ter Braak, 1987). Like CCA, RDA is a valued tool among 
ecologists and environmental scientists. CCA and RDA may also be used in a ‘partial’ 
form to filter effects of background variables so that residual variation may be 
analysed against explanatory factors of interest. One example of this being a study of 
forest condition in which relationships with atmospheric pollution were analysed after 
first ‘removing’ variation in data sets attributable to meteorological effects (Mather et 
al., 1995). 
 
2 Aim and objectives 
 
The primary intention of this investigation is to evaluate a Redundancy Analysis as a 
multivariate statistical tool for exploring student engagement and performance in a 
learning environment. As a consequence, this fulfilled a secondary aim of revealing 
interrelationships between student behaviours, preferences and achievement using the 
Ceebot environment for learning computer programming.  
 
 
3 Method 
 
First year degree students enrolled on courses in computing, games development and 
software engineering and attending a module on introductory computer programming 
were invited to participate in this study. Of a possible eighty students thirty five made 
fully valid returns (no missing data) for a questionnaire with a combined test and also 
completed the final module assessment. 
 
The combined test and questionnaire comprised: (1) a self-evaluation of perceived 
difficulty; (2) tests of commonly used terms/definitions and of code skill and 
understanding; and (3) twenty questions with Likert scale responses (see Table 1) 
designed to gauge individual acceptance of the Ceebot environment, preferences, 
behaviours and approaches to completing work. Likert scales intentionally allowed 
neutral responses. 
 
Two further variables for module mark and attendance (both as percentages) were 
included for each student record.   
 
Measures were taken to ensure that participants were willing and consented to 
recordings. The reasons for study, the ownership, protection and the distribution of 
information were clearly explained. All findings are published anonymously. 



  

   

Questionnaire returns were subjected to checks for completeness, accuracy and 
uniformity, following established recommendations of Moser and Kalton (1977). Data 
were collated in spreadsheets and, for purposes of canonical analyses with the Canoco 
5 application (ter Braak and Šmilauer, 2012), divided into response and explanatory 
data. Although other statistical packages allow canonical analysis, Canoco 5 was 
selected for reasons of a dedicated canonical specification that is subject to ongoing 
research and development. It also offers powerful graphing tools for visualising 
ordinations (Šmilauer and Lepš, op. cit.). 
 
Although a conventional approach might perhaps be to regard that module grades and 
test scores were ‘responses’ to predisposing explanatory variables (e.g. motivation, 
attendance, collaborative inclination, as indicated by questionnaire data), in initial 
analyses RDA axes were constrained to the key learning performance indices of 
interest. In other words module grades and test scores were initially reversed to 
become explanatory variables and questionnaire data became response variables.  
 
Reasons for adopting this ‘switched’ perspective included that module grades and test 
results were more representative of true gradients than the limited range of Likert 
categories. There were also a relatively large number of questionnaire variables for 
which, in the context of this exploratory study, it was highly probable that many 
would be unrelated to the learning performance variation of interest. In addition to 
potentially weak explanatory power, there was also a strong likelihood that much 
questionnaire variation was intercorrelated and collinear. 
 
Given the landscape ecology origins of canonical and redundancy analysis (in which 
species and other biological variation is commonly investigated against explanatory 
environmental gradients, there was also conceptual consistency in this converse view. 
Thus learning achievements (as indicated by grade and test results) represented 
positions along gradients in a learning landscape; these positions being in part 
determined by behaviours, preference, acceptance characteristics.  
 
4. Results and Discussion 
 
4.1 Central tendency in questionnaire responses. 
 
Initial screening for central tendency in questionnaires (Table 1) revealed only one 
item in which the overall response pattern was entirely symmetrically distributed 
around a neutral mode (Question 18 in Table 1). For all other questions Likert 
distributions were clearly skewed towards either agreeing or disagreeing to the 
assertion made. Overall consistent ‘polarities’ between similar but alternative 
viewpoints concerning acceptance of Ceebot (e.g. questions 3, 5, 6, 9, 11 and 13) and 
motivation (e.g. questions 10, 12, 16, 17, 19 and 20), suggested that questionnaires 
had been completed accurately and diligently.   
 
 
 
 
 
 
 



  

   

Table 1 Summary of frequency of Likert category against questionnaire returns.  
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1. It is very helpful to discuss Ceebot problems with friends. 21 13 0 1 0 
2. It is always possible to find information to complete exercises. 3 11 14 4 3 
3. Ceebot animated environment aids understanding. 10 16 7 2 0 
4. I find it useful to draft designs and algorithms on paper. 1 12 13 4 5 
5. Ceebot does not help me remember fundamental concepts. 0 7 3 19 6 
6. Ceebot is enjoyable. 6 20 8 1 0 
7. No formal lectures are required – just Ceebot notes. 2 7 6 18 2 
8. Like this module to be commercially recognised qualification. 5 18 8 4 0 
9. Ceebot graphics are distracting. 2 2 7 19 5 
10. Un-assessed multiple-choice tests would help with learning. 3 19 10 3 0 
11. It would be quicker to learn to program without Ceebot. 2 8 10 11 4 
12. Easiest way to complete logbooks is to cut and paste code. 5 14 11 3 2 
13. Ceebot is good for learning C-programming for employment. 7 22 6 0 0 
14. Other websites are helpful for completing exercises. 0 4 6 18 7 
15. I’m worried that Ceebot may not help me get a job. 2 6 12 10 5 
16. I only work on Ceebot exercises in practical sessions. 1 2 4 21 7 
17. 2+ hours extra work is needed to complete the week’s tasks. 7 22 1 5 0 
18. More exercises than needed to understand concepts covered. 1 9 15 9 1 
19.I work on Ceebot exercises at home. 14 17 2 2 0 
20. I’d like an e-forum to discuss Ceebot problems.  14 15 4 2 0 

 
Table 1 Notes: (1) mode category is bold and underlined; (2) questions are 
abbreviated from full questionnaire form for the purposes and convenience of tabular 
display. 
 
4.2 The interpretation of redundancy analyses and ordination diagrams. 
 
The ordination diagrams presented in Figures 2 and 3 are correlation biplots in which 
axes are scaled to unit length and increment (ter Braak, 1992; Šmilauer and Lepš, op. 
cit.). Response variables are represented by blue arrows (or vectors) and explanatory 
variables are represented by red arrows. The length of arrows is proportional to their 
standard deviations and the cosines of their angular separations between each other 
and the axes (regardless of whether explanatory or response variables) corresponds to 
their correlation coefficients, i.e. r≈cos Ѳ (Corsten and Gabriel, 1976; ter Braak, 
1987; Šmilauer and Lepš, op. cit.). Thus perpendicular relationships between response 
and explanatory arrows and axes (i.e. approximating to cosine 90⁰)   indicate   near  
zero  correlation   (r≈0) while parallel relationships   (whether   in   same  or  opposing  
directions)   represent   correlations   approaching   unity   (cos 0⁰   or   180⁰ 
corresponding to r=1 or -1 respectively).  
 
Summarising, the heads of arrows indicate the direction of maximum variation in the 
value of corresponding variable. The longer an arrow the greater the importance of the 
variable effect in the model and also the greater the confidence in the inferred 
correlation (ter Braak, 1987; ter Braak and Prentice, 1988). Variable arrows and 



  

   

ordination axes in the same direction are positively correlated, perpendicular vectors 
are not correlated and those pointing in opposing directions are negatively correlated.  
 
It is important to note that a 180⁰ shift in correlation polarity may simply reflect that a 
questionnaire item is expressed with a negative rather than a positive assertion. 
  
In tables of summary statistics (Tables 2 and 3) entries are only made for the first two 
axes because these describe the great majority of explainable variation in response 
data. The first row states eigenvalues. These express the proportion of all variation 
(unity) explained by an axis; hence their equivalence to percentage expressions for 
cumulative variation on the second row. The pseudo-canonical correlations on the 
third row express the correlation between response based and explanatory-variable 
based axes (Šmilauer and Lepš, op. cit.). The final entries for explained fitted 
variation are only concerned with variation described by the model and express the 
proportion explained by the axis concerned. 
 
Notes following summary statistic tables describe: (1) the total response variation 
explained by explanatory variables and an adjusted figure to compensate for inflatory 
bias due to small sample sizes (Šmilauer and Lepš, ibid.); and (2) a pseudo-F statistic 
is derived and may be interpreted in the same way as in ANOVA of the regression 
model (Šmilauer and Lepš, ibid.). The probability P is derived from a Monte Carlo 
permutation test. This involves random permutation of response data with respect to 
explanatory variables. Thus, if after 999 permutations, 43 random permutations 
produced eigenvalues greater than that for the original data, P would be (43+1) / 
(999+1) = 0.044. 
 
4.3 Findings from Exploratory Redundancy Analyses. 
 
The result of redundancy analysis of all data (using the ‘converse’ view that grade and 
test achievement variables represented gradients that explained distributions of 
behaviours, preference, acceptance responses) is represented by the ordination of 
Figure 2, with summary statistics presented in Table 2. 
 
 



  

   

 
 
Figure 2. Ordination Biplot for the Redundancy Analysis of student behaviours, 
preference, acceptance responses (as indicated by blue arrows representing 
questionnaire returns and class attendance) against positions along learning 
performance gradients (as indicated by red arrows indicating module grade and tests 
of programming knowledge and coding skill). 
 
The first (horizontal) axis describes most variation in response variables at 
approximately 9% (Table 2 eigenvalue 0.0915 and cumulative percentage 9.15%). 
The direction and length of the two “Test (code ... )” vectors indicate their overall 
influence on the first axis and relative effectiveness in describing the greater 
proportion of explainable response variation.  The second axis is uncorrelated to the 
first axis, apparently most strongly influenced by Module % but weakly related to the 
two “Test (code skill/knowledge)” vectors. This axis describes a further 5% of 
variation in response data. Table 2 coefficients ~0.85 and ~0.70 express that the 
correlation between response based and explanatory-variable based axes are highly 
significant. The Monte Carlo permutation test confirms the overall significance of the 
model (p=0.044). 
 
It is clearly evident that the two “Test (...)” items explain most variation in response 
(behaviour) data, although the overall module grade (Module %) is also strongly 
related to response variation in both first axis and the orthogonal second axis. Those 
response variables most strongly related to explanatory variation of interest included 
behaviours of independent study and homework (16 - only work in practical sessions; 
19 - work at home) and peer collaboration (1), but surprisingly weakly associated with 
‘Attendance’. The latter is the shortest and least significant vector in the entire model. 
Further investigation revealed that this apparent anomaly may be partly attributed to a 



  

   

small group of students with advanced subject knowledge who did not attend 
regularly. 
 
Table 2 Summary statistics for Redundancy Analysis and Ordination presented 
in Figure 2. 
 

Statistic Axis 1 Axis 2 
Eigenvalues 0.0915 0.0516 
Explained all variation (cumulative %) 9.15 14.31 
Pseudo-canonical correlation 0.8523 0.6975 
Explained fitted variation (cumulative %) 54.04 84.52 

 
Table 2 Notes: (1) Explanatory variables account for 16.9% all variation (adjusted 
explained variation is 4.5%); (2) Permutation Test Results (on all axes): pseudo-
F=1.4; P=0.044. 
 
Explanatory variables (red in Figure 2) were clearly effective in describing response 
variation. However, the orthogonal relationship between the key element of 
assessment (Module %) and the un-assessed tests on code understanding and skill, 
unexpectedly suggested that strong module performance was not necessarily a reliable 
predictor of programming ability. This finding was clearly of pedagogic concern. A 
simple correlation check (Pearson product-moment) also suggested that although 
“Test (code understanding)” was significantly correlated with “Module %” (r=0.56, 
p<0.001), “Test (code skill)”, was not correlated with overall assessment grade 
(r=0.27, p<0.117).  
 
There were strong correlations between “commitment” indicators (16 “only work in 
practical - disagree”, 19 “work at home – agree” and 12 “maintaining logbook - 
agree”). 
 
Among other exploratory patterns of interest was the correlation between response 13 
(“good for learning C type languages”) and the second axis, as well as a strong 
relationship to overall “Module %” and the evident orthogonal relationship with “Test 
(code skill)”. This indicated that appreciation of Ceebot may not have been so 
strongly expressed by more adept programmers. Similarly, the strong negative 
correlation between the indicator for collaboration (stated as “It is very helpful to 
discuss Ceebot problems with friends” in the questionnaire and labelled “1 
collaboration” in Figure 2) and “Module %” suggested that such behaviour was more 
greatly valued by those achieving high overall module grades than those who were 
‘purely’ proficient at programming. 
 
Although there are other correlations and patterns deserving of pedagogic attention, 
the aforementioned represent the most significant and, with respect to this analysis, 
are perhaps within limits of model interpretation.  
 
The proportion of overall variation explained by learning performance indicators may 
appear low. However, this is not surprising given the exploratory nature of 
questionnaire items and the fact that some questions will unavoidably introduce 
variation that is unrelated to learning performance.  
 



  

   

Among objective measures used to filter such extraneous variation was stepwise 
forward selection of factors explaining most variation in learning performance. To do 
this it was necessary to adopt a conventional view that the learning performance 
indicators “Module %”, “Test (code skill)” and “Test (code understanding)” were 
responses to explanatory characteristics (behaviours, preference and acceptance 
characteristics) expressed in the questionnaire.  
 
The following analysis therefore uses forward selection and also excludes variables 
that contribute little to the overall model, such as “Attendance”, or are redundant 
through collinear/inter-correlation with other variables, for example “Test (code 
understanding)”. It also observes Canoco’s over-fitting alert, based on termination 
criterion of Blanchet et al. (2008). This suggests when further stepwise inclusion is 
unadvisable on the grounds that adding another predictor would increase the R2 
(adjusted) to a value greater than that would be otherwise obtained by fitting the full 
model with all predictors.  
 
After removing obvious sources of collinearity, stepwise selection observing 
termination criterion resulted in a simpler model (Figure 3) with only six 
questionnaire items. A reduction in ‘unexplainable’ variation is partially responsible 
for increased eigenvalues and overall variation explained by the model (Table 3 
indicates the first axis accounts for approximately 35% of overall variation and the 
second axis accounts for some further 13%). However, a direct comparison should not 
be made with the earlier RDA due to the changed focus of analysis. The overall model 
is highly significant (Table 3 notes: pseudo-F=15.7; P=0.002). 
 
The alignment of item 19 (full form, “I work on Ceebot exercises at home”) with the 
first axis and the two indicators of learning achievement, and the overall length of 
vector suggests that this is the most important item describing variation in learning 
performance. This is confirmed by the statistics for stepwise regression (Table 4) that 
indicate item 19 alone accounts for more than 33% of the explainable variation and 
that its contribution is also highly significant (pseudo-F 6.5, P=0.004).   
 

 



  

   

 
Figure 3 Ordination Biplot for Redundancy Analysis of learning performance 
responses (blue vectors) against step-wise selections of behaviours, preference 
and acceptance (red arrows). Notes: (1) response and explanatory variables are 
‘switched’ in relation to the earlier analysis so that learning performance are 
responses and questionnaire variables are explanatory, thereby allowing stepwise 
inclusion of key variables and elimination of collinear or otherwise redundant terms; 
and (2) stepwise selection is terminated on according to Canoco 5’s internal over-
fitting warning based on criterion of Blanchet et al. (2008). 
 
Of items remaining after stepwise selection, 13 “Ceebot is good for learning C ...”, 20 
“I’d like an e-forum ...”, 5 “Ceebot doesn’t help me remember concepts ...” and “3 
Ceebot environment aids understanding ...” each account for some 14-15% of 
explainable model variation (Table 4.).  The last item included in stepwise selection, 
“1 Collaboration (discussion)” in Figure 3, accounts for a smaller proportion of model 
variation. 
 
The alignment of Ceebot acceptance indicators (item 5, disagreeing that Ceebot 
doesn’t help with remembering concepts and the test of programming ability; item 3 
agreeing that Ceebot animation assists understanding and a balanced alignment 
between both indicators of learning performance) suggests overall appreciation in 
Ceebot as a learning platform. 
 
Table 3 Summary statistics for Redundancy Analysis and Ordination presented 
in Figure 3. 
 

Statistic Axis 1 Axis 2 
Eigenvalues 0.3517 0.1260 
Explained all variation (cumulative %) 35.17 47.77 
Pseudo-canonical correlation 0.7494 0.5806 
Explained fitted variation (cumulative %) 73.63 100.00 

 
Table 3 Notes: (1) Explanatory variables account for 47.8% all variation (adjusted 
explained variation is 37.0%); (2) Permutation Test Results (on all axes): pseudo-
F=15.7; P=0.002. 
 
Two items suggest the value of measures for peer communication and collaborative 
working (20 “I’d like an e-forum ...”; 1 “Helpful to discuss Ceebot tasks with friends 
...”).  Item 13 is somewhat anomalous in that no one disagreed that Ceebot is good for 
learning C (i.e. the entire range of Likert responses were only in categories 1, 2 and 
3), thus its alignment with Module % suggests that respondents generally agreed or 
were neutral but didn’t ‘strongly agree’ with this assertion. 
 
 
 
 
 
 
 



  

   

Table 4 Summary statistics for Predictors included in Stepwise Forward 
Selection in the Redundancy Analysis and Ordination presented in Figure 3. 
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19 I work on Ceebot exercises at home 16.1 33.6 6.5 0.004 
13 Ceebot is good for learning C ... 6.7 14.0 2.8 0.084 
20 I’d like an e-forum ... 6.9 14.5 3.1 0.064 
5 Ceebot doesn’t help me remember concepts ... 7.6 15.8 3.7 0.028 
3 Ceebot environment aids understanding ... 6.8 14.2 3.6 0.018 
1 Helpful to discuss Ceebot tasks with friends ... 3.8 7.9 2.1 0.128 

 
5. Conclusions and Recommendations 
 
With respect to the primary aim, “to evaluate a Redundancy Analysis as a multivariate 
statistical tool for exploring student engagement and performance in a learning 
environment”, findings indicate that RDA was appropriate and useful for describing 
patterns of student behaviour and preferences associated with measures of ‘success’. 
The canonical facility to directly focus or constrain analysis to gradients of interest, 
combined with powerful biplot visualisation of variable influence, vector association 
and collinear effects provide the researcher with a robust method for identifying 
pedagogically meaningful influences. In this study, centred on the Ceebot learning 
environment, RDA was found to be effective in screening indicators and behaviours 
that may be predictors of learning performance and of acceptance of the environment. 
 
The secondary aim, “of revealing interrelationships between student behaviours, 
preferences and achievement using the Ceebot environment for learning computer 
programming”, was only achievable because both conditions were satisfied that: (1) 
RDA was demonstrated to be an appropriate form of analysis; and (2) that most 
questionnaire items were, to greater or lesser extents, valid predictors for the measures 
of learning performance.  
 
Although a number of patterns of pedagogical interest were noted, key and significant 
findings were: (1) the weak association between overall module assessment and the 
computer programming skill ability; and (2) the three indices of learning performance 
were correlated with behaviours of independent study and peer collaboration but not 
with attendance. From a perspective of teaching practice, results indicated that 
logbook based assessments may need to be revised to more closely align with 
programming skills valued in the workplace. There was also some evidence that 
requirements for attendance may be reconsidered, perhaps relaxed for experienced 
computer-programmers able to demonstrate prior learning. Additionally, opportunities 
for collaborative learning (discussion) were valued and positively associated with 
learning performance. From a learner perspective RDA revealed that the key predictor 
of success was commitment to continue module work outside timetabled sessions.  



  

   

 
Regarding ongoing work and recommendations for readers interested in using 
canonical tools, the canonical viewpoint of learner behaviours determining positions 
along landscape gradients of performance is novel perspective. This, however, 
requires further investigation to determine whether such a paradigm may aid in 
detecting and encouraging behavioural transformations that ‘predict’ success. It is 
anticipated that research will continue to use RDA to monitor effects of modifications 
to teaching practice. One such planned modification is the inclusion of formative tests 
to develop code-skills.  
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