
Automatic Assessment of Programming Assignments to Enable New Educational
Paradigms

José Cardoso, University of Porto, Portugal
João Carlos Pascoal Faria, University of Porto and INESC-TEC, Portugal

Bruno Miguel Carvalhido Lima, University of Porto and INESC-TEC, Portugal

The European Conference on Education 2017
Official Conference Proceedings

Abstract
Automating the assessment of programming assignments in higher education
institutions is important to provide prompt feedback to the students, reduce teachers’
workload on repetitive tasks, avoid human errors, and enable the exploration of new
educational paradigms such as gamification and course adaptation based on learning
analytics. However, the automatic assessment of programming assignments is
challenging because of the variety of programming languages, the variety of
assessment strategies, the difficulty to assess quality attributes beyond functional
correctness, and the need to integrate with e-learning and students management
platforms. There are several platforms for automatic assessment that are used namely
in programming contests, but that support only one assessment strategy or do not
integrate with students management platforms. To overcome those limitations, the
authors, from the Faculty of Engineering of the University of Porto, developed an
extensible web based platform for the automatic evaluation of programming
assignments, integrated with the students management platform, and supporting
multiple programming languages (ranging from Assembly to Java) and assessment
strategies (input/out, API), as well as gamification and analytics features. The
platform, in a controlled and secure environment (protected against malicious code,
infinite loops, etc.), executes the code submitted by students against test suites
submitted by the teacher, reporting the results to the students and relevant statistics to
the teachers. The platform was successfully applied in real class environment,
involving 340 students from two different courses, significantly reducing the time for
feedback and teachers workload as compared to previous editions.

Keywords: Education, Programming, Automatic Assessment, Gamification, E-
learning, Learning Analitycs

iafor
The International Academic Forum

www.iafor.org

Introduction

In recent times, we have witnessed the increasing use of e-learning platforms and
their tools have assumed an increasingly active role in Portuguese teaching. Not only
have teachers been giving preference to these tools in that they allow a more didactic
and interesting environment to the student of today and emphasize learning through
technology.

E-learning tools are characterized by their distance learning model based on an online
web browser platform. This teaching method has a wide range of platforms, such as
Moodle, FEUP's platform of choice, which has multiple forms of teaching support,
such as online text-based exercises, message exchange with teachers, etc. Most of
these tools support the addition of new plug-in functionality.

In the case of Portuguese higher education, namely at the University of Porto, Moodle
has become a very important platform, being obvious the immense advantages that
this brings to the support of teaching, providing resources of document management,
provision of curricular contents, communication between students and teachers,
creation of quizzes and platform for the resolution of exams and exercises. With
regard to the teaching of curricular units that involve programming, there is also the
need and the idea of using tools capable of supporting the development and correction
of code, since this is done manually by the teacher.

The creation and promotion of programming competitions also added the need to
create and develop tools capable of performing and analyze code and compare the
results obtained by the program to the competition as well as the analysis of various
metrics and statistics. There are many already developed tools capable of realizing all
these functionalities, however, all of them have been developed given a specific need,
and, therefore, may not be ideal for correcting exercises in a teaching context nor do
they allow the teaching institution to manage The students and teachers.

Motivation and Goals

In the dissertation we intend to develop a web platform integrated with Moodle, a e-
learning platform, capable of assisting the teachers of Object Oriented Programming
Laboratory (LPOO) and Microprocessors and Personal Computers (MPCP) of the
Integrated Master in Computer Science and Computation of the FEUP in the
performance of the tasks of evaluation and correction of the practical exercises of
programming of the students of these same Curricular Units (UC).

Through the set of unit tests, provided by the teachers of the above mentioned UCs, it
is possible to construct a safe and automatic environment that will allow the students
to have their exercise evaluated without the intervention of the teachers.

For this dissertation, it was then proposed the development of a system capable of
supporting the teaching of the UCs in FEUP, as it can streamline the whole process of
correction of programming exercises as well as provide feedback to students when
End of the financial year in question.

This system should seek to be integrated with the Moodle platform, already used and
accepted in UP, promoting and maximizing the usefulness of the same. This system
must, on the one hand, be able to take advantage of all the advantages that the e-
learning platforms offer and at the same time allow to perform the analysis of source
code as well as its execution, correction in face of the unit tests and Respective
analysis of the output result.

The organization and authentication of students and teachers is one of the main
characteristics of the system to be developed and will have to be implemented
according to the credentials used in the SIGARRA (Information System for
Aggregate Resource Management and Academic Records) also used by Moodle.
Another extremely important feature is the management of the exercises in an exam
or class context; These will have to be identified by occurrence, UC and examination
and have associated with them a battery of tests (to be made available by the professor
at the time of exam / exercise submission) in order to validate the quality, correctness
and efficiency of the source code Submitted by the students in response to the
exercise.

The system to be developed must be prepared for the most extreme moments of stress,
that is, with a large number of students submitting their exercises. These moments
will be unavoidable given the limited time in the examination context. The system
should attempt to send a response within the shortest time interval about the validity
of the submission and, if it is the intention of the teacher, of the process of executing
the student code presenting the information regarding the correction of the source
code in order to facilitate the detection of Mistakes by the student.

The entire process of executing the submitted source code must be carried out in a
sandbox environment, where malicious code execution will not compromise the
teacher's machine or others present on the network. It is necessary for the system to
organize, in an organized way, all the source code and associated battery tests,
providing a range of statistics, organized by exercise and by exam, such as: Exercise
more times wrong; Battery of tests that failed more times and others still to be
defined. The system should allow teachers to export, also in an organized way, the
source code, the exam, and the test batteries, including previous occurrences of the
Curricular Unit.

Use of E-learning Platforms Context

Nowadays, we are inserted in a context that is increasingly dependent on technology;
Higher education is no exception, and the paradigms and references concerning the
education system and its processes are steadily diverging to an online and
technological model

In the case of UP, we see, more and more, the use and support in the tools of e-
learning to take a predominant role as it is the case of Moodle. The purpose of this
dissertation, as mentioned in the previous chapter, is to develop a system capable of
streamlining the entire process of correcting programming exercises and providing
feedback to students when the exercise ends. To do this, it is important to analyze
which tools allow you to compile and run and evaluate the source code produced by
students.

When we want to choose a tool that supports the compilation and execution of source
code should be taken into account to define well what we want to obtain from the
analysis of the result obtained taking into account several metrics.
These metrics consist of a wide range of points: the comparison of the result obtained
with an expected result, the syntax and semantics of the code, the analysis of the
source code itself in order to verify if the implemented logical structures respect the
intended implementation of the concepts required in the Number of unit tests
performed successfully, etc.

Moodle

The Moodle is an e-learning platform, Virtual Learning Environment (VLE),
developed in the light of Pedagogical principles and thinking about the creation of
communities focused on learning, which is constantly evolving, adapting to the new
requirements and needs that arise, being the most used platforms by schools and
universities, such as the University of Porto, both for online courses and in face-to-
face classes.

Moodle is, therefore, a course management system, developed in PHP to create and
manage courses in a way online. Its main advantage is that it is open source, allowing
any user to modify and make adaptations of the environment according to their own
needs, which has resulted in the development of several different objectives.

In addition to the user-developed plugins, this system has a wide range of features
implemented natively. Some of these, and that are important for the context of this
dissertation, are the submission of works (file submission), download of files made
available by the users (teachers or students), elaboration and Multiple choice, true or
false and space filling, and implementation with multiple authentication systems (such
as SIGARRA in the case of UP).

After all, Moodle has the major disadvantage of not having support for performing
source code analysis and execution.

Moodle and other e-learning platforms feature the basic functionality of student and
teacher account management, file submission, and exercise creation. Moodle is more
advantageous when compared to other tools because it is free and open source, which
allows each user to develop custom functionalities. However, all these platforms
suffer from the limitation of not allowing code execution.

Automatic Program Evaluation Tools

Unlike e-learning platforms, these tools already support the compilation and
execution of source code and are used mostly in programming contests as Marcos
Kirchner describes in his article.
In programming competitions, competitors must create solutions to the problems
presented to them. Each solution is a source code file written in the programming
language defined by the contest, which, when compiled, executes a program which,
through an input, generates an output. Finally, the program is evaluated by the online
contest selection tool and wins the competitor who has the best evaluation \ cite
{kosa2005evaluating}.

However, given the nature and mode of use of these tools, one can extrapolate their
use to a teaching context in the form of programming exercise brokers in the context
of class or examination.

Mooshak, for example, is a web system that allows the management and organization
of programming contests, developed by Prof. José Paulo Leal of the Faculty of
Science of the University of Porto and is used in several programming competitions,
such as the National Olympiad of Informatics. In addition to the use of this tool in the
scope of the competitions, there have already been efforts to include the use of this
tool in the area of higher education and is already used by some university as a way to
support programming classes.

All the researched tools did not meet the requirements planned for the development of
this dissertation, since they only allow input / output testing.
The UCs for which this platform is being developed require a very specific testing
strategy. In the case of MPCP, the input is given in code form and in the case of
LPOO the supplied input is unit tests in JUnit.

MOJO was a tool that already integrated Moodle with some online evaluation tools.
This tool promised to be a good starting point for the elaboration of the project
proposed for this dissertation since it already had an integration module. However, the
idea of using this tool as a starting point was discarded for two reasons: the first
consisted of time constraints, since if Moodle had been used, it would be necessary to
wait for the servers responsible for managing the platform to place the platform online
for the validation phase; The second was related to the discontinuation of the tool,
which made it impossible for the authors to support the MOJO experimentation.

Solution

In order to overcome the problem presented for this dissertation, a web platform was
developed that allows the automatic evaluation of programs developed in an academic
environment (in the context of an exam or practical class).
As mentioned the automatic source code evaluation tools are limited to outputs
comparison tests, therefore, and as a way of bridging this need for programming
languages Java and Assembly, for the LPOO and MPCP, the platform supports, in
addition to the simple atomic comparison of outputs, several methods of code
evaluation such as executing test batteries provided by teachers, unit tests.
The web system was developed through a set of four technologies: NodeJs,
MongoDB, Angular and Java.

In this work, a solution was developed that integrates the client-server architecture
and a set of JAR files that constitute the test and automatic evaluation modules. In this
way the work developed is basically constituted by two distinct projects, the website
and the modules, being that there was a logical separation between both so that, in the
future, modules for other programming languages could be developed. The platform
architecture is client-server and is described in the figure below:

Figure 1: System architecture

The server, developed in NodeJS, stored in a virtual machine on the FEUP network
and accessible through the IP 192.168.58.101, constitutes the entire backend of the
application that is responsible for executing and managing all requests from the client
side through REST requests. In this server are also housed the two automatic code
evaluation modules. Authentication is done through a REST request to SIGARRA.
The client side is developed in Angular and Typescript having separate interfaces for
the teacher and the student, each with different functionalities.

As mentioned, the system includes two different types of users: the teaching user and
the student user. Each type of user is authenticated in the system through its
institutional credentials, however the features that are allowed to them are different
given the nature of their roles. The authentication request, made to SIGARRA, allows
you to identify which type of user is, by returning a {'A'} code to identify a student
and {'F'} to identify an employee, who in the context This application is a teacher.

The student is an authenticated user in the system and has access to the exams and
exercises corresponding to the UCs that he is carrying out with the purpose of
submitting the source code. The complete list of features that a student will have in
the system is found in the table below.

Table 1: List of features for the Student

ID Description
R001 View exam
R002 View the exercise
R003 Submit source code
R004 Edit submission
R004a Perform new submission
R004b Delete Submission
R005 View feedback after submission

The teacher, also an authenticated user, has an administrator role in the system, that
is, he will be able to manage the content that will be made available to the student,
delivery dates, conditions, test cases and exercises.

The complete list of functionalities that a teacher will have in the system is found in
the table below

Table 1: List of features for the Professor

ID Description
R001 Create LPOO exam
R002 Create MPCP exam
R003 Edit exam
R004 Delete exam
R005 Add Exercise
R005a Write statement
R005b Define the exercise mode (exam or exercise) which implies provisioning or

not of automatic correction feedback
R005c Define the programming language
R005d Add test cases
R00 Edit Exercise
R007 Delete exercise
R008 Add Student Material
R009 Generate final report
R010 Export exams from previous years
R011 Export source code submitted by the student

Platform Utilization

Initially, the teacher creates an exam, which must submit the exercise with statement
and test cases and submit them on the platform. It is also possible to submit some
initial code to serve as a starting point for the student to begin elaborating the
exercise. In the case of UC MPCP, this material consists of 3 files: a mpcp.inc file
with required dependencies, a.asm file with an example input to test your code and a
file with the source code of the source code. In the case of LPOO this material
consists of a Java project to serve as a basis for development.
After submission, the teacher can export the final report with the grades of all the
students who made submissions.

After the creation of the exam by the teacher, the student accesses the system, through
a provided url, visualizes the exercise, unloads the material provided and then
develops the source code. When finished, it submits it to the system and feedback is
provided.

Automatic Evaluation

When a source code file is submitted in response to an exercise the server will run the
autocorrection module corresponding to the CU of the examination in question.

The server first checks the language corresponding to the exam through the CU by
creating a separate thread in order to execute the code in sandbox in a secure way,
thus preventing potential problems due to code Malicious or defective. Then it

executes the correction module corresponding to the language. There are 2 different
test execution modules, one for Java and one for Assembly.

The Java automatic evaluation module was inspired by a script created by Prof. Nuno
Flores. Throughout several meetings the method used was studied and what were the
limitations that it offered. One of the problems that was detected was that it was not
possible to continue the process when a student's code caused an exception. Hence the
present module was developed.

This module consists of a JAR file consisting of 4 classes: BulkProcessing.java,
Configuration.java, Main.java, and SystemCommand.java. The Configuration class is
responsible for managing system-specific commands. It populates a Hash Table with
all the commands that are used in managing and handling files.

The SystemCommand class takes care of assembling the commands and executing
them in a secure and controlled way by creating threads whenever a command is
executed. The class BulkProcessing is the main class of the module. It is in this class
that the whole process is defined and chained, as well as all the control of errors and
writing of the final evaluation grid. This module has 2 modes of execution: analysis
of a single submission and analysis of the complete set.

First, the module looks in the base directory of the exam for all the .zip files that
represent student submissions. Next, a new temporary directory called correction is
created for which the student code is extracted and the teacher's test class copied.
After that, the code is all compiled and the test class is executed. Finally, a .csv file is
generated on which the classifications of each student are written.

The mode of analysis of a single submission is analogous to the first, but is done for
each individual student when submitting the source code

The Assembly automatic evaluation module consists of a single class. First, the
module looks for all the test cases included by the teacher within the exam base
directory. Then the contents of the test case folder are copied to the student directory
and the code is then compiled generating a exe file. After the executable is generated,
it is executed by redirecting the output to a text file by comparing it with the expected
output. This method is repeated for all test cases, finally generating a .csv file in
which the classifications of each student are written.

Validation

To validate the developed platform, it was conducted 2 different experiments, one for
each UC. For LPOO the experiment we selected a group of random submissions from
a test of past years, submitted then to the platform to see if we achieve the same
classification. For MPCP it was gathered 5 students to resolve an assignment and
submit it to the platform, after which an actual professor validated the platforms’
results.

After gathering all the results of the two experiments it is possible to conclude that
they had a certain success, being able to determine that there is value in the project

developed and that the results were very similar to the manual process used by the
teachers.
The platform had a very good adhesion rate and the students present in the experience
recognized the value and usefulness in the same considering it an added value in the
teaching process.
One of the points to note was the weak feedback of the assembly module and this is a
point to improve in the future.

Although these experiences show a promising future for the platform, I recognize that
the sample is very small compared to the desired one. This was due to the fact that it
was only possible to do this validation during the exam period, which meant that the
number of students willing to participate in the experiment was very small.

Conclusion

The objective of this dissertation was the development of a web system that allows
the analysis and automatic correction of source code developed in response to
programming exercises. In order to do this, several existing platforms and tools have
been studied that somehow try to fill this need.

In the early stages of development, a number of approaches and technologies were
tested that, at first glance, seemed to respond to the needs and requirements outlined,
which led to a delay in that not all approaches were compatible with each other,
leading to the initial work being redone. However, with the help and advice of my
advisors it was possible to come up with a good solution, described in chapter \ ref
{chap: chap3}.

The presented solution is in a good state of maturation that allows to respond to the
basic needs exposed contemplating all the control and security restrictions, being very
evident the success and the promising future of this tool. I think that in the context of
this dissertation all the main objectives of automatic evaluation were fulfilled.
However, it should be noted that not all lower priority objectives have been met. In
addition to the aforementioned reason, the computer attack that occurred in \ Feup \
prevented the agile development of the platform from delaying it for a significant
time.

The tests and experiments carried out on the solution allowed to show the viability of
the platform in a real context and the adherence to it.

In short, we can recognize that the priority objectives of this dissertation have been
successfully met and that it can serve as a proof of concept of the viability of each
technology regarding feasibility and the expected purpose.

This dissertation opens up vast possibilities for future work. One of the first steps is to
improve the platform in terms of performance and code validation as well as the
improvement of the feedback provided in the case of the MPCP module.

An unfinished business is about learning analytics, that is, creating checks of which
test cases students are failing most often in order to reinforce these contents in
practice classes.

Another point to consider as future work would be the possibility of creating online
W3Schools style courses to serve as a form of self-taught learning for students as well
as the introduction of Gamification in order to foster the competitive spirit among
students in a didactic context.

Finally, an obvious point would be the inclusion of more automatic correction
modules in order to cover a greater number of languages and UCs in FEUP.

