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Abstract 
To save time, cost and labor, there are many studies that have been conducted about 
the detection of faults in industrial processes. Most of the previous studies used only 
Independent Component Analysis (ICA) or Principal Component Analysis (PCA) for 
detection, but they cannot form close enough boundaries to reject outliers. This paper 
proposes an ICA-based approach to detect outliers in a process by forming close 
boundaries. The basic idea of the proposed method is to apply ICA to convert original 
data into independent components, and then apply Durbin Watson (DW) criterion to 
select important independent components. Hereafter, Support Vector Data Description 
(SVDD) has been applied for outlier detection by forming much tighter boundaries. 
The efficiency of proposed ICA-based approach is investigated via a simulated 
multivariate process example. To demonstrate the identification capability of the 
proposed ICA-based approach, the traditional Hotelling’s T2 chart is constructed for 
the simulated data set. 
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Introduction 
 
In Statistical Process Control (SPC), Hotelling’s T2 chart adopts the original variable 
to calculate Mahalanobis distance. A simple type of Multivariate Statistical Process 
Control (MSPC) is a multivariate chart which is an extended from univariate SPC 
methods like Hotelling’s T2 chart (Montgomery, 2001). This chart is unable to detect 
small changes taking place during the cycle. To remove this drawback, MEWMA and 
MCUSUM are developed to detect small process changes (Virojana et al., 2003). 
However, the fault detectability decreases as the number of variables increases. 
Principal Component Analysis (PCA) has been widely used for detecting faults 
because of its compatibility with many of the methods available in MSPC (Bakshi, 
1998) and its ability to reduce attribute dimensions. However, PCA lacks in assuming 
state of variable, it assumes that latent variable follows Gaussian distribution, while in 
chemical processes variables hardly remains at stable state because of the 
uncontrolled disturbances. 
 
Dynamic PCA (DPCA) has been proposed which uses an amplified matrix with time 
lagging variables (Ku et al., 1995). Serial correlation of data has been considered in 
this method. Along with other developed methods, DPCA has been widely used in 
many fields such as sensor fault detection (Luo et al., 1999 and Rato et al., 2013), 
multi-scale fault detection, multi-scale analysis, simultaneously monitoring, diagnosis 
in the wastewater treatment process (Yoo et al., 2002) and diagnosing an automatic 
controlled process (Tsung, 2000). Kernal PCA has been developed for nonlinear 
nonstationary process monitoring (Khediri et al., 2011). 
 
Techniques based on Independent Component Analysis (ICA) have been developed 
(Kano et al., 2003 and Lee et al., 2003) recently. ICA is used for decomposition of 
data into linear combination of components independent from each other. Then, ICA 
monitoring on lagged variables, Dynamic ICA has also been used to detect faults. 
Chiang et al. (2004) has used Support Vector Machine (SVM) and Fisher 
discriminant analysis (FDA) for fault diagnosis. Guo et al. (2014) proposed envelope 
based dimension reduction for ICA in fault diagnosis. 
 
ICA has been used extensively for fault detection since it gives more sophisticated 
results than PCA, and the ICA’s power in fault detection has been ascertained. 
However, the improvement of ICA based fault detection approach is still in need 
because of the following limitations of ICA (Hyvärinen and Oja, 1997; Hyvärinen, 
1999; Hsu et al., 2010): 1) the incapability of identifying important independent 
components (ICs), 2) the lack of understanding the influence of original variable on 
given IC, and 3) the loose boundary for enveloping all data points. 
 
Understanding the abovementioned limitations of ICA, this paper aims at developing 
an efficient approach of fault detection and diagnosis for non-Gaussian processes. In 
the proposed approach, important ICs are selected with the help of Durbin Watson 
(DW) criterion (Dublin and Watson, 1950). Original variables are retraced to obtain a 
view that which original variable is influencing the identified important independent 
components. Further, Support Vector Data Description (SVDD)(Tax and Duin, 2004) 
has been applied for the purpose of tightening of the boundary surrounding the data 
points. 
 



 

The Proposed Fault Detection and Diagnosis Approach 
 
Firstly, the basics of ICA, DW and SVDD are presented. Independent component 
analysis (ICA) is an approach which supposes statistical independence of non-
Gaussian source signals for dividing a multivariate signal into smaller components. 
Readers are referred to (Lee et al., 2003) for the further details of ICA. ICA can be of 
many types such as Jade (Rutledge and Bouveresse, 2013), FastICA (Hyvärinen, 
1999), etc. In this paper, we use FastICA. 
 
Hyvärinen (1999) invented FastICA which is an efficient algorithm for ICA. FastICA 
has many advantages over normal ICA model which are discussed later in this paper. 
Centering and whitening of the input vector data x has to be done before applying 
FastICA algorithm (Hyvärinen, 1999). The FastICA is finds maximum of the non-
Gaussianity (Hyvärinen, 1999; Hyvärinen and Oja, 1997) and it is based on fixed 
point iteration scheme. By approximative Newton iteration FastICA can be derived. 
 
Recently, Durbin Watson (DW) criterion has been widely used in many models, and 
recently found its application in ICA (Ammari et al., 2011). Initially this methodology 
was proposed for measuring signal/noise ratio (Dublin and Watson, 1950). In absence 
of any king of noise, the DW value tends toward 0, and if signal consist of only noise, 
it will incline to 2. This criterion has been used for validation of the multivariate 
models (Rutledge et al., 2002; Gourvénec et al., 2002 and Gomez-Carracedo et al., 
2007). Readers are referred to Dublin and Watson (1950) for the further details of 
DW. 
 
In Support Vector Data Description (SVDD), it is assumed that the data is enclosed 
by a hyper sphere with minimum volume (Tax and Duin, 2004). We try to minimize 
probability of accepting outliers by minimizing the volume of the enclosed space. 
SVDD is able to make tighter boundaries around the data points. Readers are referred 
to (Tax and Duin, 2004) for the further details. 
 
The work of SVDD is to map the target data nonlinearly into a higher dimensional 
feature space and construct a separating hyperplane with maximum margin there. It is 
probable to find the dividing hyperplane without explicitly carrying out the map into 
the feature space by using kernel function. The dot product xi

.xj can also be avoided 
by implementing kernel function. Kernel function is any kind of a function that 
follows Mercer’s Theorem (Sch¨olkopf et al., 1999). The most often used kernels are 
polynomial kernel and radial basis function (RBF) (Sun and Tsung, 2003). In this 
paper, RBF has been used as the kernel. 
 
After introducing the basics of ICA, DW and SVDD, we describe the architecture of 
the proposed fault detection and diagnosis approach for non-Gaussian processes. The 
algorithmic procedure for ICA-DW-SVDD consists of two phases, offline training 
and online monitoring. After data preprocessing which includes centering and 
whitening of data the much advanced algorithm FastICA is applied first to obtain ICs. 
A large number of ICs causes involvement of noise in the data, therefore the DW 
algorithm is applied to get important ICs. They can be selected by observing the DW 
color plot. For training purpose selected important ICs are used to obtain SVDD 
parameters which are further used while monitoring of testing data. SVDD algorithm 
is used enclosing data points in much tighter boundary and for detecting outliers. 



 

After detection of outliers, original variables are retraced in order to get a clear view 
of the factors affecting faults, and this is done with the help of proposed retracing 
algorithm. 
 
A Simulation Example 
 
In this paper, the proposed approach is applied to monitor a simple multivariate 
process, and this simulation work is similar to (Lee et al., 2004 and Ku et al., 1995) in 
which there are five monitored variables in a dynamic process as follows: 
 

 

 
 
where Y is the output with three variables (y1, y2, y3). Y is the normal distributed 
random vector with zero mean and variance of 0.1. U is the input with 
 

 
 
where W is a random vector following uniform distribution over interval (-2, 2). Input 
is U and output is Y, for process monitoring total five variables (y1, y2, y3, y4, y5) are 
used. 
 
A total of 1,000 observations are sampled for each simulation. The first 500 
observations are used as a training data set and the remainders are used for on-line 
process monitoring. At observation 500, a step change of w1 by 3 is introduced. This 
means that the first 500 training observations are not contaminated by outliers, and the 
remaining 500 data are faulty. The FastICA algorithm is applied to the generated data, 
and 5 ICs are obtained as a result of this. Results of DW criterion represents that 4 ICs 
are important, while 1 IC contains mainly noise. The 4 important ICs have been 
divided into target and outlier data sets. First 500 data are selected for testing, and the 
rest for outlier detection. In the training data, no outlier is selected. And results are 
obtained for number of normal data in test data as shown in Table 1. Actually, there is 
no normal data in test data. 
 

Table 1: The results of simulation example. 
Value of sigma Detection rate (%) 
3 99 
4 100 
5 100 
6 98 
7 96 
8 96 
9 94 
10 92 

 



 

There, for sigma equal to 4 and 5, error is equal to 0, i.e. every abnormal data has 
been verified as outlier data. We choose the value of sigma equals to 4 for further 
calculation. The hyper spherical boundary rejects 500 outliers, and makes tighter 
boundary enclosing only 500 normal data. Figure 5 illustrates the graph of distances 
of generated data from the centroid of the data points. Width parameter of RBF kernel 
function’s is found out using sensitivity analysis and using sigma value equal to 4 in 
SVDD, it itself sets threshold according to the number of abnormal data we consider 
for training. It has been seen in Figure 1 that threshold has been set around 0.71 by 
SVDD to enclose all normal data and hence rejects all other points above threshold. 
Those points above the threshold should be considered as faulty. 
 
Conclusion 
 
In this paper, we proposed an approach based on ICA, DW and SVDD for the purpose 
of fault detection and diagnosis in non-Gaussian processes. The fault detection 
problem is converted to a one-class data description problem. The proposed 
monitoring method uses FastICA to get ICs. The DW algorithm is used to get 
important ICs, which further used in SVDD algorithm for enclosing data points in 
much tighter boundary and for detecting outliers. The model based on SVDD 
expresses fault-free data distribution using a hyper sphere with a close-fitting 
boundary. The proposed approach is validated on a simulation example. 
 

 
Figure 1: The distances of generated data from the centroid of data points. 
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