
A Tree-Based Chart for Visualizing Programming for Problem Solving

Po-Yao Chao, Yuan Zu University, Taiwan
Yu-Ju Chen, Yuan Zu University, Taiwan

The Asian Conference on Technology in the Classroom 2017
Official Conference Proceedings

Abstract
Programming for solving problems has been an important skill in computer
programming education. However, most of the assessment for the skill tends to
emphasize on the product of programming rather than the process of programming.
Considering students’ process of programming may gain insight into the
understanding of students’ difficulties and their performance, this study incorporates
problem solving and visual programming activities to develop a programming
learning environment where students interact with the learning environment to solve
computational problems. By examining students’ behaviors and strategies of problem
solving exhibited in the environment, the process and product of students
programming activities can be visualized with a tree-based chart. The features and
patterns of the tree-based chart may indicate different combination of programming
strategies and their effects on performance of problem solving. A case study was
conducted to explore the patterns of the tree-based chart. The findings show that the
patterns of the tree-based chart were categorized into three different types: accuracy,
trial-in-error, and revision. The follow-up interviews were conducted to explore the
relationships between the patterns, personal factors, and performance of problem
solving.

Keywords: visual programming, tree-based chart, problem solving

iafor
The International Academic Forum

www.iafor.org

Introduction

With the advancement of computer technology, the computational thinking is more
and more important (Grover & Pea, 2012). Learning programming is not only a skill
but also can help individual improve their reasoning. Due to the importance of
computational thinking, many counties advocate for the promotion of programming
education in K-12 and childhood education. Moreover, it is believed that
computational thinking is related with the development of logical thinking and
creativity (Sáez-López, Román-González & Vázquez-Cano, 2016). In Liao and Bright
(1991) meta-analysis, they analyzed 65 research about the computational thinking
studies. Fifty-eight studies (89%) demonstrated that the computational thinking has a
positive impact on the development of children’s thinking abilities. Computational
thinking is an essential skill for the 21st Century (Einhorn, 2011).

Learning programming is not easy for students because the programming is
essentially a problem solving activity (Areias & Mendes, 2007). Programming
requires not only basic knowledge of programming concepts and skills but also the
ability of problem solving (Linn, 1985). Therefore, assisting students to learn how to
formulate problems, analyze problems, and design workable solutions to the problem
is important to programming learning. Because the concepts of programming is
abstract (Muller & Haberman, 2008) and the syntax of programming language often
involves complicated logics, novice learners hardly success in programming (Wilson
& Moffat, 2010). Considering learning programming involves understanding abstract
concepts, visualization of these abstract concepts may serve as a important tool in
learning computational science (Brodlie et al., 1993). Since visualized programming
learning environments may offer concrete and intuitive information, programming in
these environments may help students comprehend abstract concepts and realize
complicated logics when compared with traditional programming languages
(Sáez-López et al., 2016).

Assessment is a process that uses information gathered through measurement to
analyze or judge a learner's performance on some relevant work task.
(Sarkees-Wircenski & Scott, 1995). The traditional programming education tend to
more concentrate on the products of programming rather than on the process of
programming. Considering students often exhibits strategies of problem solving in the
process of solving programming problems, including measurement relevant to the
process of programming may improve accuracy of assessment for students’
programming abilities. Therefore, in this study, we develop a programming learning
environment where students interact with the learning environment to solve
computational problems. The environment containing a robot character with which
students need to instruct the robot to solve computational problems with pre-defined
graphical instructions. Students’ behaviors and their use of graphical instructions were
visualized and logged for further analysis. The logged data were employed to explore
different dimension about the process of solving computational problems. For more
detailed address in the state of problem solving, Gagne and Yekovich (1993) defined
three different states of problem solving: starting, intermediate, and goal. In this study,
the three different states were employed to depict students’ process of problem
solving in a tree-based chart. The chart aims to reveal different combinations of
programming strategies and their corresponding effects on problem solving.

Method

To explore students’ behaviors and strategies of problem solving, a case study was
conducted to explore the patterns of problem solving in a visualized programming
learning environment. The learning environment includes a computational problems
and a set of pre-defined graphical blocks. As shown in Figure 1, to the right the
graphical representation of computational problems. Students were asked to collect
flowers or fruits with limited amount of graphical blocks. Students first create a base
to edit instructions to a robot character, and then they can drag and drop graphical
blocks to compose programs to instruct the robot to solve computational problem. The
programming concepts needed to know for students to solve the problem include
sequence, operator, conditional, loop, and variable.

Ten participants were asked to participate in the case study. They were classified in
two groups, one is who have programming experience and the other is novice of
programming. Participants were asked to solve two parts of computational problems:
training and basic. At the beginning, the participants solve training problems that
would help them get familiarized with the environment and the function of graphical
blocks. After they finished the training problems, the researcher would verified that
all the participants did not have problems in solving problems in the visualized
programming learning environment. The participants were asked to solve basic
problems that were harder and more complex when compared with training problems.
Once a participant completed all the basic problems, he/she was given an interview.
The interviews were recorded to explore different combination of programming
strategies and the relationship between tree-based chart and user’s performance.

We use the tree-based chart to visualize the process of the problem solving. The
features of the tree-based chart reveal the pattern of problem solving. The features
include depth, node number, density, instruction accuracy. The depth is the number of
segmentation of the problem. The node number is the number of execution. The
density is the accuracy of the problem solving. The instruction accuracy is the ratio of
insert instruction and update instruction. The higher the value, the more accurate.

Figure 1: Example of Computational Problems.

Result

10 participants (4 competent users and 6 novices) in the case study, age about 20 to 30
years old. According to the features and pattern of the tree-based chart, the patters
were categorized into three types: accuracy, revision, and trial-and-error (Figure 2).
Different color of tree node in the tree-based charts represents different states of
problem solving. The green, red, and blue node represent starting, intermediate, and
goal state. When users execute the instruction of a base, the execution creates a new
node in next layer representing the new state of the execution. Participants could back
trace to the previous base on the map, which changes the state of problem solving.

Tree type Depth Node Number Density Instruction Accuracy
Accuracy 4 4 1 100%
Revision 5 7.5 1.5 91%
Trial and error 7.5 14.1 1.89 68%

Table 1: Participants’ averages of problem segmentation, execution, and instruction
accuracy in solving a computational problem.

Table 1 shows participants’ averages of problem segmentation, execution, and
instruction accuracy in solving a computational problem (Figure 1). Participants were
divided into three groups: accuracy, revision, and trial-and-error. The accuracy group
shows low density and high instruction accuracy. However, the trial-and-error group
reveals high density and low instruction accuracy. The revision group demonstrates
medium density and high instruction accuracy. To visualized participants’ patterns of
solving problems, the abovementioned indicators were transformed into tree-based
charts (Figure 2). The accuracy tree-based chart features almost no branch, all degree
is 1. The revision tree-based chart has small amount of branches around 2 to 3. Finally,
the trial-and-error tree-based chart has large amount of branches.

Figure 2: Types of tree-Based Charts

In the interview, we compared participants’ problem solving behaviors between
competent and novice students. In terms of problem segmentation, competent students
tend to complete a series of steps, and then create a new base to solve the rest parts of
the problem. For example, they pick up all of the flowers, then create a base to clean
the grass. However, the novices tend to make many bases, because they want to
minimize the number of instructions for each base. In terms of loop use, if competent
users find something needs to repeat many times, they will use the loop to complete
the problem. On the other hand, the novices seldom use the loop at the beginning.
They will not use loop blocks until the amount of graphical blocks exceed the limit.

For debugging, competent users generally applied breakpoints to observe robot’s
behavior and perceived the breakpoints very useful for debugging. The novices rarely
used breakpoint functions but always try many time to find the errors.

Though the interview and data, we can explore the relationships between the patterns,
personal factors, and performance of problem solving. Some of the competent users
tend to demonstrate accuracy features. They always had good strategies in the
problem, so they seldom encounter mistakes. Their tree will like the step that was no
branch. Their value of instruction accuracy was very high. Some of the competent
users tend to exhibits revision features. When their instruction occurred an error, they
would use breakpoints to debug. They can find error accurately, so they did not
execute many times to find an error. Their tree would have some branch but not too
more. Novices tend to trial and error. They executed many times in same instruction
or made a lot of bases. So, the tree of novices will produce many nodes in the same
layer or more depth than competent users.

Conclusion

The visualize programming learning environment seems effective to help learner
learning computational thinking and promote their motivation to solve problems.
Many users, especially novices, who think the environment allows him/her to learn
the basic concepts of programming.

In this study, by examining students’ behaviors and strategies of problem solving
exhibited in the environment, the process and product of students programming
activities can be visualized with a tree-based chart. The chart is easier to observe
students’ process of problem solving. For example, a tree has many nodes in the same
layer may reveal that a student may have obstacle in understanding programming
concepts when solving computational problems. The large amount of program
execution may demonstrate that the student try and error many times. The features
and the patterns of the tree-based charts may help teachers or students assess the
performance of solving computational problems, which may gain insight into
students’ process of programming for solving problems.

References

Areias, C., & Mendes, A. (2007). A tool to help students to develop programming
skills. Proceedings of International Conference on Computer Systems and
Technologies, 20:1-20:7.

Brodlie, Ie, Poon, A., Wright, H., Brankin, L., Banecki, G., & Gay, A. (1993).
GRASPARC - A problem solving environment integrating computation and
visualization., In Proceedings of the IEEE Conference on Visualization, 102-109.

Einhorn, S. (2011). Microworlds, computational thinking, and 21st century learning:
Logo Computer System Inc, White Paper.

Gagne, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology
of school learning. New York, NY: HarperCollins College Publishers.

Grover, S., & Pea, R. (2012). Computational thinking in K-12: a review of the state of
the field. Educational Researcher, 42(1), 38-43.

Muller, O., & Haberman, B. (2008). Supporting abstraction processes in problem
solving through pattern-oriented instruction. Computer Science Education, 18(3),
187–212.

Liao, Y. C., & Bright, G. W. (1991). Effects of computer programming on cognitive
outcomes: a meta-analysis. Journal of Educational Computing Research, 7(3),
251–266.

Linn, M. C. (1985). The cognitive consequences of programming instruction in
classrooms. Educational Researcher, 14(5), 14-29.

Robins, A., Rountree, J., & Rountree, N. (2003). Learing and teaching programming:
A review and discussion. Computer Science Education, 13, 137-172.

Sáez-López, J., Román-González, M., & Vázquez-Cano, E. (2016). Visual
programming languages integrated across the curriculum in elementary school: A two
year case study using 'Scratch' in five schools. Computers & Education, 97, 129-141.

Sarkees-Wircenski, M., & Scott, J. L. (1995). Vocational Special Needs. Homewood,
IL: American Technical Publishers.

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger school
children to programming. In Proceedings of the 22nd Annual Psychology of
Programming Interest Group (Universidad Carlos III de Madrid, Leganes, Spain).

