
An Interactive Example for Game-Based Programming Environment

Po-Yao Chao, Yuan Ze University, Taiwan
Yun-Jen Hu, Yuan Ze University, Taiwan

The Asian Conference on Technology in the Classroom 2015
Official Conference Proceedings

Abstract
Many researchers suggest that programming is beneficial to career and the
development of problem solving skills. However, traditional teaching methods
and learning environments for programming accentuate the difficulties of
programming since they merely emphasize the syntax or features of
programming language and they offer few support in acquiring programming
strategies. With advance of computer games and simulation environments,
game-based problem solving activities have potential in improving the
competence of programming strategies by providing interactive examples.
Therefore, the purpose of this paper is to incorporate features of interactive
examples and game-based learning to develop a game-based learning
environment for programming strategies. Learners develop their programming
strategies with the help of interactive examples that guide the learners with
procedures of problem solving steps and ask the learners to complete partial
solutions for problems. This completion task is believed to benefit the
motivation and performance of developing programming strategies. The
influences of the game-based learning on learner behavior, strategies, and
performance are also explored in the paper.

Keyword：interactive example, game-based programming environment, programming
strategies

iafor	
 	

The International Academic Forum

www.iafor.org

Introduction

With the popularity of computer and advanced information technology, leaning
programming has been a trend. According to the U.S.A Bureau of Labor calculated,
2010 to 2020 the number of job openings of programmer is expected to growth 30%
substantially, the other job only growth 14%(Lockard & Wolf, 2012). On the other
hand, since September 2014 coding has been introduced to the school timetable for
every child aged 5-16 years old, making the UK the first major G20 economy in the
world to implement this on a national level. According to the research, learning
programming can enhance students' ability of problem solving (Baroody & Coslick,
1993). Moreover, programming is a way of thinking by using abstraction and
decomposition to solve problems (Liu, Cheng, & Huang, 2011). Having the ability to
programming will enhance the self-competitive (Kiczales et al., 1997). Many
researchers suggest that programming is beneficial to career and the development of
problem solving skills (Atkinson, Derry, Renkl, & Wortham, 2000; Renkl, 2005;
Sweller & Cooper, 1985; Zhu & Simon, 1987).

Cognitive Load Theory (Sweller, 1988, 2006, 2010) suggests that learning should
consider the learner’s cognitive load instead of traditional teaching method which
merely focus on practice. To novice, learning from examples is more effective than
directly answer the question (Renkl, 2005). However, compared with nature science,
which can clearly observed behavior of learning target, programming involves
abstract concepts and dynamic execution processes. It is difficult to observe the
sequence and status during the execution of program in the traditional learning
programming environments. Making programming a visualized process will assist the
description of the programming process and status (Kaila, Rajala, Laakso, &
Salakoski, 2010). Research found that simulation-based learning environment can
improve the ability of problem solving (Liu et al., 2011), and game-based learning can
improve engagement and motivation (Perrotta, Featherstone, Aston, & Houghton,
2013). Therefore, to help learner understand abstract concepts and dynamic execution
process. We develop an interactive example scaffolding based on our previous
game-based programming environment, and explore the influence of this interactive
example scaffolding for learners.

Game-Based Programing Environment

The game-based programing environment proposed in this paper is a simulation
environment which learner’s goal is to instruct a robot so that he can collect items on
a farm effectively. Learners generate an instruction card containing a set of
instructions to control the robot. Through solving task in the environment, learners
gradually learn the programming concepts and skills. However, in this paper, we
designed an interactive example mechanism which a programming problem and the
corresponding sets of instructions as solution made by experts were employed to help
novice programmers learn how to solve the problem by exploring the solution. The
novices may examine the instructions and then observe the result of executing these
instructions. They also may insert or delete instructions to test their hypotheses. To
improve transfer we design tasks similar with the interactive examples to examine
novices’ problem solving after the novices finish the exploration of interactive
examples. Learning with the interactive example mechanisms contains the following
parts:

(1) Expert model
Each programming problem involved in the interactive example mechanism
corresponds to a set of instructions made by programming experts. The instructions
serve as expert model that train the novice programmers in terms of how to apply and
implement specific programming strategies. Novice learners can carefully consider
the planning of path the robot should move and review the segments of instructions
generated by the experts. Through the programing executing, the novice learners
observe the ways which an expert solve programming problem and consequently
develop a preliminary understanding of the model.
(2) Formation of mental model
Novice learners develop their mental model by generate and test their hypotheses on
the predication of the robot’s actions. The learners may insert of modify instructions
embedded in the interactive examples and then verify the effect of the modified
instructions on the robot’s reaction. Several functions enable the learners to generate
and test their hypotheses. They edit the expert instructions to implement the
hypotheses, which includes: modify instructions, insert instructions, copy instructions,
delete instructions, and modify the instructions.
(3) Control for simulation
The simulation provides novice programmers with a continuous visual feedback. To
help the learners build complete mental model, the mechanism also offers the
functions to control the simulation. For example, when learners require further
verification, they may set breakpoints to pause the execution of the program.

Illustration of Interactive Example
Figure 1 illustrates the use of interactive example. In this example a learner’s goal is
to collect all the flowers, bomb a stone and reach farmer’s place. The initial state of
the environment includes flowers, stones, and the places of robot and the farmer, as
shown in Figure1 (a). The green path highlights the routes planned by the expert and
instruction cards generate by the expert is displayed on the top left of a grid. In this
example, expert set three instruction cards as the representation of corresponding
solution. If a learner moves their mouse over the instruction cards, the content of that
card will show next to it shown as Figure 1(b). Click the instruction card it will show
the edit panel in the left side of scene shown as Figure1 (c).

(a)

 (b) （c）

Figure 1: Default environment

	

In this example, a learner first presses the execute button which initiates the robot to
execute the instructions. The goal is to collect all of the flower and bomb a stone. An
instruction card, as shown in Figure 2(a), includes a loop that repeats four times of a
series of instructions. For each loop, the robot first determines whether there is a
bomb on the left and then continues to determine whether there is a flower on its right.
Finally the robot takes one step forward. The learner may hypothesize that the
sequence of determination and the movement may make no difference in their
corresponding results. As shown as Figure 2(a), the learner may try to modify the

sequence of the instruction by clicking the arrow next to the forward action to change
its location as shown in Figure 2(b).

（a）	
 （b）

Figure 2: Move instruction
	

After executing the instructions contained in the Figure 2(b), the robot didn't pick a
flower in coordinate (3, 4) shown in Figure 3(a). When robot reach the farmer’s
position, the system displayed messages indicating the failure of the program as
shown in Figure 3(b). To fix the failure, the learner may observe the robot’s behavior
so that he can identify the problem. He set a breakpoint to purposeful pause the
execution and examined the results.

 （a） （b）

Figure 3: Executed result

Evaluation
The participants are 84 freshman of non-major students who are 19 years old. Before
evaluation, they are introduced to the interactive example mechanism for two hours.
The process of the evaluation, shown in Figure 4, includes practice and survey phases.
During the former phase, participants were asked to explore one interactive example
and solve a programming problem similar with the provided example. This phase took
60 minutes. The latter phase aimed to explore how the participants use the interactive
example mechanism by briefly interviewing the participants.

Figure 4: Process of evaluation

The preliminary result shows that 51 participants could finish the process of exploring
interactive examples and solving the similar task successfully. This may suggest the
interactive examples had the potential in assisting the participants solving specific
programming problems by exploring corresponding interactive examples. The results
of interview showed that some students think that learning programming through this
game-based environment is more interesting than the conventional approach. For
example, S11 said “learning programming from the game is a good way”. S25 said “It
is more attractive and interesting than taking class”. With regard to the interactive
example, some students think it provide guidance when they tackle with the similar
tasks. For example, S13 noted “I knows how to solve the task when there is an
example” and S34 considered more example can help learners reach task more
successful. Some students give us useful advice, they suggest that we can give some
hints to help them when they has difficulties with task. For example, S5 hope there is
a hint when player spend too long to reach task. The student S6 said “I will not feel
frustrated if there were a hint”.

Based on the result of the evaluation, the game-based learning environment and the
proposed interactive example mechanism may help novice programmers solving
programming problems and develop more complete mental model. We hope the
proposed environment and mechanism can integrated into the curriculum so that
novice learners can learning their programming in a more active and interesting
manners.

Reference

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from
examples: Instructional principles from the worked examples research. Review of
educational research, 70(2), 181-214.

Baroody, A. J., & Coslick, R. T. (1993). Problem solving, reasoning, and
communicating, K-8: Helping children think mathematically: Prentice Hall.

Kaila, E., Rajala, T., Laakso, M.-J., & Salakoski, T. (2010). Effects of course-long use
of a program visualization tool. Paper presented at the Proceedings of the Twelfth
Australasian Conference on Computing Education-Volume 103.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., &
Irwin, J. (1997). Aspect-oriented programming ECOOP'97—Object-oriented
programming (pp. 220-242): Springer.

Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (2011). The effect of simulation games on
the learning of computational problem solving. Computers & Education, 57(3),
1907-1918.

Lockard, C. B., & Wolf, M. (2012). Occupational employment projections to 2020.
Monthly Lab. Rev., 135, 84.

Perrotta, C., Featherstone, G., Aston, H., & Houghton, E. (2013). Game-based
learning: latest evidence and future directions: NFER Slough.

Renkl, A. (2005). The worked-out-example principle in multimedia learning. The
Cambridge handbook of multimedia learning, 229-245.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning.
Cognitive science, 12(2), 257-285.

Sweller, J. (2006). The worked example effect and human cognition. Learning and
instruction, 16(2), 165-169.

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational psychology review, 22(2), 123-138.

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2(1), 59-89.

Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing.
Cognition and Instruction, 4(3), 137-166.

Contact email: poyaochao@saturn.yzu.edu.tw

Acknowledge
This research was partially funded by the Ministry of Science and Technology under
MOST103-2511-S-155-001-MY2

