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Travelling salesman problem with time windows (TSPTW) is a well-known NP-hard problem 
in which the objective is to minimize the total travel cost or makespan when visiting each of a 
set of customers within a given time period. In the literature, TSPTW with the objective of 
travel cost minimization is extensively studied and a good many heuristic methods are 
developed to solve these problems. However, TSPTW with the objective of makespan 
minimization rarely studied and fewer solution approaches are proposed. In this study, we 
develop a novel differential evolution algorithm to solve TSPTW with the objective of 
makespan minimization. The performance of the proposed algorithm is tested on several 
benchmark problems from the literature. According to the experimental results, the 
differential evaluation algorithm outperforms the existing approaches for makespan 
minimization. 
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Introduction 
 
Travelling salesman problem is a well-known NP-hard problem in which a set of nodes are 
visited only once by a single vehicle with the objective of minimization the tour cost starting 
and ending at a given depot. Each customer has a time-window defining its earliest and latest 
service start time and a service time. In a feasible tour, each customer has to be visited before 
its latest service time. Otherwise the tour is qualified as an infeasible tour. Moreover, if a 
customer is visited before its earliest service time, the delivery has to wait until the earliest 
service time is reached.  The vehicle spends a predetermined period of time at each customer 
to conduct its service. Afterwards the service is completed the vehicle immediately leaves the 
relevant customer to serve the next scheduled customer.   
 
TSPTW problems have two possible minimizing objective functions that are minimizing the 
total travel time on the path or minimizing the total travel time on the path. The former 
objective function has been more commonly investigated in the literature.  Baker (1983) 
developed a branch-and-bound approach, Dumas et al. (1995) used an exact dynamic 
programming algorithm, whereas Langevin et al. (1993) proposed a branch-and-cut algorithm 
to solve TSPTW with two-commodity flow. Mingozzi, Bianco, & Ricciardelli (1997) 
suggested a two-phase dynamic programming method and their proposed algorithm 
outperforms previous algorithms when solving similar test problems. Pesant et al. (1998) 
developed a novel branch-and-bound optimization algorithm without any restrictive 
assumption on the time windows. Ascheuer et al. (2001) studied the asymmetric version of 
the TSPTW, and generated a branch-and-cut algorithm applying techniques for these kinds of 
problems.  In this study, recent techniques such as data preprocessing, primal heuristics, local 
search, and variable fixing are adapted for the asymmetric TSPTW.  
 
Since TSPTW problem is an NP-hard problem, the exact algorithms are limited to solve some 
large TSPTW problems. Thus, heuristic and meta-heuristic algorithms are developed to solve 
large TSPTW problems in a short time.  Carlton and Barnes (1996) proposed a robust tabu 
search algorithm with a static penalty function to promote more diverse neighborhood search.  
Gendreau et al. (1998) developed insertion heuristic based on GENIUS heuristic which a 
combination of the insertion procedure and a post-optimization procedure. Calvo (2000) 
suggested a classical two-phased insertion heuristic with 3-opt local search to solve TSPTW 
problems. The advantage of their algorithm is that it is able to find an initial solution close 
enough to a feasible solution of the original problem with solving an assignment problem with 
an ad hoc objective function. Ohlman and Thomas (2007) presented simulated annealing 
variant compressed annealing that integrates a penalty method with heuristic search and they 
showed that compressed annealing method employing a variable penalty function outperforms 
simulated annealing method with a static penalty function. Ibanez and Blum (2010) proposed 
a new heuristic named as Beam-ACO that is combining ant colony optimization and beam 
search to solve TSPTW for minimizing the travel cost. Silva and Urrutia (2010) suggested a 
two stage VNS based heuristic, which is composed of constructive and optimization stages. 
They show that, the proposed algorithm is an effective method, which can solve larger 
problem instances in a short time and improves some best knows results from the literature.  
 
Authors developing heuristic approaches have focused on travel-time optimization and fewer 
results are published on makespan optimization.  The objective of the TSPTW with makespan 
optimization is to minimize the total tour completion time. In the makespan calculation, the 
waiting times are included to the tour time. Langevin (1993), Carlton and Barnes (1996), 
Cheng (2007) and Favaretto (2006) considered TSPTW with makespan optimization objective 



in their research. Ibanez et al. (2013) adapted two novel algorithms for the TSPTW with travel 
time minimization objective, compressed annealing (CA) and the Beam-ACO algorithm, to 
solve makespan optimization objected TSPTW. Karabulut and Tasgetiren (2014) generated a 
variable iterated greedy algorithm for solving the traveling salesman problem with time 
windows (TSPTW) to minimize the total travel cost and the total travel completion time so 
called makespan, separately. They showed that the proposed method outperforms the other 
methods in terms of performance and speed.  
 
In the literature TSPTW with the objective of travel cost minimization is extensively studied 
and a good many heuristic methods are developed to solve these problems. However TSPTW 
with the objective of makespan minimization rarely studied and fewer solution approaches are 
proposed. Therefore, in this study we developed a novel differential evolution algorithm to 
solve TSPTW with makespan minimization objective. The performance of the proposed 
algorithm is tested on several benchmark problems from the literature. According to the 
experimental results, the differential evaluation algorithm outperforms the existing 
approaches for makespan minimization. The paper is organized as follows. Section 2 provides 
the problem formulation. In Section 3, the proposed method differential evolution algorithm is 
considered. Computational experiments and results are presented in Section 4. Finally, 
conclusions are reported in Section 5.  
 
Problem Formulation  

 
Graph G = (V, A) is given, where V = {0, 1, 2,…, n} is a set of nodes representing the depot 
(node 0) and n customers and the arc set is A = 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 . For every edge 
𝑖, 𝑗 ∈ 𝐴 between two nodes i and j, there is an associated cost 𝑐!" that denotes the travelling 

cost from customer i to customer j which includes both the service time of a customer i and 
the time needed to travel from i to j. Additionally to this, each customer i has an associated 
time window 𝑒! , 𝑙!  where 𝑒!and 𝑙! represent the ready time and the due date, respectively. 
Therefore, the TSPTW can be considered as a problem of finding a Hamiltonian tour that 
starts and ends at the depot, satisfying all time windows constraints and minimizing the total 
distance traveled. The TSPTW with the objective of the total travel time is formulated by 
Karabulut and Tasgetiren (2014) as follows: 
 

min 𝑓 𝑥 = 𝑐(𝑥!
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𝜔 𝑥! = 1              𝑖𝑓        𝐴!!   > 𝐼!!
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Equation 1 represents the objective function, which minimizes the total travelling cost, which 
includes the waiting times. In the above definition, 𝑊!! denotes the waiting time at customer i 
and 𝑝 𝑥  represents the total number of time windows, which are violated by tour x that must 
be zero for feasible solutions. Equation 2 guarantees that all the customers are served within 
the relative time windows and there is no time windows violation.  
 
 



Differential Evolution Algorithm for the TSPTW Problems 
 
Differential evolution algorithm (DEA) is one of the relatively new and effective population 
based meta-heuristic method. It is firstly developed by Storn and Price (1997). This 
evolutionary algorithm is related to genetic algorithm (GA) and it is easy to implement and 
use, effective and efficient when compared to genetic algorithm. It uses same operators with 
genetic algorithm such as crossover and mutation and selection. However the operators are 
implemented simultaneously in DEA. In addition to this, DEA relays on mutation while GA 
rely on crossover.  
 

 
 

 
Figure 1 - DEA Flow Chart (Schmidt and Thierauf, 2005) 



The Figure 1 determines the flow chart of DEA. For the TSPTW problems our initial 
population is created by using time windows. Through the operators they are changed as 
continuous variables. To evaluate the fitness value we use a sort function and genes, which 
represent the costumers, are being arranged according to their values in ascending order.  
 
Computational Experiments 
 
In this section, we present our results from our computational experiments. We aim to apply 
our proposed DEA method to solve TSPTW problems and evaluate the performance of our 
method. And then we compare our computational results with the state-of-art methods for the 
previously described test instances. The computational experimentation is performed on a 
Pentium Dual Core Machine with 4 GB of memory and 120 GB of hard drive using 
MATLAB R2009a. The parameters for the algorithm are selected as: F=0.5, number of 
iterations=1000, population size=50 and crossover rate=0.9.  
 
  



Table 1- Results for Potvin&Bengio Test Instances 
 

    VIG_VNS ACO DEA  
Problem N Avg Best Avg Best Avg Best 
rc201.1 20 592,06 592,06 592,06 592,06 592,06 592,06 
rc201.2 26 869,9 869,9 877,49 877,49 860,175 860,175 
rc201.3 32 854,12 854,12 867,61 853,71 853,71 853,708 
rc201.4 26 889,18 889,18 900,52 900,38 889,18 889,18 
rc202.1 33 850,48 850,48 880,74 871,11 850,71 850,48 
rc202.2 14 342,20 342,20 338,52 338,52 345,17 338,52 
rc202.3 29 904,48 904,48 892,18 847,31 894,10 894,10 
rc202.4 28 854,12 854,12 ∞ ∞ 855,06 853,71 
rc203.1 19 488,42 488,42 673,07 663,66 490,45 488,42 
rc203.2 33 853,71 853,71 926,75 897,88 863,69 853,71 
rc203.3 37 956,92 956,92 ∞ ∞ 1108,38 921,44 
rc203.4 15 350,83 350,83 493,85 493,85 338,52 338,52 
rc204.1 46 950,36 950,36 949,68 949,68 925,877 925,234 
rc204.2 33 701,62 701,62 863,65 821,63 774,59 715,04 
rc204.3 24 455,03 455,03 642,06 635,36 516,74 455,03 
rc204.4 14 426,13 426,13 428,39 425,2 417,81 417,81 
rc205.1 14 455,94 455,94 422,24 417,81 417,81 417,81 
rc205.2 27 820,19 820,19 820,19 820,19 820,19 820,19 
rc205.3 35 950,05 950,05 950,05 950,05 950,05 950,05 
rc205.4 28 867,13 867,13 870,43 850,99 837,71 837,71 
rc206.1 4 117,85 117,85 117,85 117,85 117,85 117,85 
rc206.2 37 917,26 917,26 914,99 909,30 882,6824 870,488 
rc206.3 25 661,07 661,07 650,59 650,59 650,59 650,59 
rc206.4 38 930,1 930,1 943,31 943,31 912,28 911,98 
rc207.1 34 865,07 865,07 860,98 851,06 833,40 821,78 
rc207.2 31 735,56 735,56 ∞ ∞ 734,25 713,90 
rc207.3 33 800,39 800,39 955,7 944,52 795,984 751,494 
rc207.4 6 133,14 133,14 133,14 133,14 133,14 133,14 
rc208.1 38 841,28 841,06 934,8 925,36 822,12 810,701 
rc208.2 29 644,13 644,13 722,24 712,96 601,29 580,205 
rc208.3 36 747,15 747,15 795,03 774,72 750,70 698,69 

 
Firstly, the proposed DEA algorithm was tested on the symmetric TSPTW problems derived 
by Potvin&Bengio (1996). The computational results of the DEA for Potvin& Bengio 
(1996)’s instances are given in Table 1. The results show that the DEA can generate better 
solutions than the other methods for some test problems. Secondly, we tested our algorithm 
on the asymmetric test instances derived by Ascheuer. The Ascheuer benchmark set consists 
of 50 asymmetric TSPTW instances with up to 233 nodes. Travel times are integer and satisfy 
the triangle inequality. The test results show that our algorithm also performs well on the 
asymmetric test instances. The test results are shown in Table 2.  

 
 



Table 2- Results for Ascheuer Instances 
 

Problem N Best DEA Avg. DEA Best Difference GAP (%) 

rbg010a 12 - 3840 3840 - - 
rbg016a 18 - 2596 2596 - - 
rbg016b 18 2094 2094 2094 0 0,0% 
rbg017.2 17 2351 2351 2351 0 0,0% 
rbg017 17 - 2351 2351 - - 
rbg017a 19 4296 4296 4296 0 0,0% 
rbg019a 21 2694 2694 2694 0 0,0% 
rbg019b 21 - 3840 3840 - - 
rbg019c 21 - 4536 4536 - - 
rbg019d 21 3479 3479 3479 0 0,0% 
rbg020a 22 4689 4689 4689 0 0,0% 
rbg021.2 21 4528 4528 4528 0 0,0% 
rbg021.3 21 4528 4528,0 4528 0 0,0% 
rbg021.4 21 - 4535 4530 - - 
rbg021.5 21 4516 4516,5 4516 0,5 0,0% 
rbg021.6 21 4492 4496,2 4486 4,2 0,1% 
rbg021.7 21 4481 4487 4481 6,3 0,1% 
rbg021.8 21 4481 4485 4481 4,0 0,1% 
rbg021.9 21 4481 4485 4481 3,7 0,1% 
rbg021 21 - 4536 4536 - - 
rbg027a 29 5093 5093 5093 0,0 0,0% 
rbg031a 33 3498 3498 3498 0 0,0% 
rbg033a 35 3757 3757 3757 0 0,0% 
rbg034a 36 3314 3314 3314 0 0,0% 

rbg035a.2 37 3325 3325 3325 0 0,0% 
rbg035a 37 3388 3388 3388 0 0,0% 
rbg038a 40 5699 5699 5699 0 0,0% 
rbg040a 42 5679 5679 5679 0 0,0% 
rbg041a 43 3793 3793 3793 0 0,0% 
rbg042a 44 3260 3260,4 3260 0,43 0,0% 
rbg048a 50 9799 9799 9799 0,0 0,0% 
rbg049a 51 13257 13257 13257 0 0,0% 
rbg050a 52 - 12050 12050 - - 
rbg050b 52 11957 11958 11957 0,5 0,0% 
rbg050c 52 10985 10985 10985 0,0 0,0% 
rbg055a 57 6929 6929 6929 0 0,0% 
rbg067a 69 10331 10331 10331 0 0,0% 
rbg086a 88 16899 16899 16899 0 0,0% 
rbg092a 94 - 12501 12501 - - 
rbg125a 127 14214 14214 14214 0 0,0% 
rbg132.2 132 18524 18524 18524 0 0,0% 



rbg132 132 18524 18524 18524 0 0,0% 
rbg152.3 152 - 17455 17455 - - 
rbg152 152 17455 17455 17455 0 0,0% 
rbg172a 174 17783 17784 17783 1 0,0% 
rbg193.2 193 21401 21401 21401 0 0,0% 
rbg193 193 21401 21401 21401 0 0,0% 
rbg201a 203 21380 21380 21380 0 0,0% 
rbg233.2 233 26143 26143 26143 0 0,0% 
rbg233 233 26143 26143 26143 0 0,0% 

 
Conclusion  
 
Travelling salesman problem is a well-known NP-hard problem in which a set of nodes are 
visited only once by a single vehicle with the objective of minimization the tour cost starting 
and ending at a given depot. In the literature TSPTW with the objective of travel cost 
minimization is extensively studied and a good many heuristic methods are developed to 
solve these problems. However TSPTW with the objective of makespan minimization rarely 
studied and fewer solution approaches are proposed. Therefore, in this study we developed a 
novel differential evolution algorithm to solve TSPTW with makespan minimization objective. 
We conducted computational experiments to compare the results of the existing heuristics for 
TSPTW with the results generated by DEA. The experimental results show that our algorithm 
is comparable with all known heuristic approaches to the problem in terms of the solution 
quality. Therefore, the proposed DEA algorithm is a good alternative solution methodology to 
solve TSPTW problems. Additionally, the proposed DEA algorithm can be extended to other 
variants of TSP problem, algorithm codes could generate with a different programming 
languages to improve the CPU times or a new meta-heuristics can also be applied to solve the 
TSPTW in the future research. 
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