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Abstract  
While satellite remote sensing systems have been widely applied to soil moisture 
monitoring, they are unsuitable for soil moisture monitoring of small areas, which 
merely cover several hectares, due to their low spatial or temporal resolutions. In 
order to address this problem, a multispectral sensor, Parrot Sequoia, carried on an 
unmanned aerial vehicle (UAV) is adopted to acquire the multispectral images with 
green (0.550 µm), red (0.660 µm), red-edge (0.735µm), and near-infrared (0.790 µm) 
bands, as well as the geometric resolution of 0.2 m. Thus, thematic maps of 
Normalized Difference Vegetation Index (NDVI) can be derived by the 
differentiation of spectral responses between red and either red-edge or near-infrared. 
In this research, an agricultural field in Kinmen, Taiwan was selected as the study 
site, and several in situ sampling points were schemed for monthly data acquisition of 
soil moisture at two depths: 10 cm and 20 cm. Based on the in situ sampling data and 
the thematic maps of NDVI, an empirical model was established for soil moisture 
mapping. The preliminary results show that NDVI offers a good explanation for soil 
moisture at deep depth. The range of the estimated soil moistures are approximately 
between 10 and 20%. 
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1. Introduction 
 
Soil moisture monitoring, which is usually implemented by the satellite-based remote 
sensing techniques (Wang, et al., 2007; Chen, et al., 2014; Mladenova, et al., 2014; 
Petropoulos, et al., 2015), has also been widely applied to hazard prevention (Hawke 
& McConchie, 2011; Laiolo, et al., 2016), agricultural management (Mallick, et al., 
2009; Sakai, et al., 2016), and climate (Schnur, et al., 2010; Dente, et al., 2012; Fang, 
et al., 2016). Based on the satellite images, Wang, et al. (2007) and Chen, et al. (2014) 
calculated the normalized difference of vegetation indices (NDVIs) to establish the 
correlations between the NDVIs and soil moisture. Mladenova, et al. (2014) reviewed 
the passive microwave-based techniques and the soil moisture retrieval algorithms, 
where NDVI is involved. The spatial resolution of satellite images, such as the 250 
m/pixel of Moderate Resolution Imaging Spectroradiometer (MODIS), is capable of 
NDVI analysis of country or continental scales, but is unsuitable for small areas 
merely covering several hectares. Furthermore, Wang, et al. (2007) and Petropoulos, 
et al. (2015) both indicated that while passive microwave radiometry and active 
microwave radar, such as synthetic aperture radar (SAR), have been widely applied to 
soil moisture mapping, the radar signal only penetrates soil surface to several 
centimeters so that only the soil moisture of the top few centimeters can be mapped. 
In this research, an unmanned aerial vehicle (UAV) due to its flexibility as well as 
reliability is considered as a good vehicle to carry a multispectral sensor for the 
acquisition of remote sensing data with high spatial resolution. 
 
Currently, there are many applications of unmanned aerial remote sensing systems 
(UARSSs) to water quality monitoring (Su & Chou, 2015; Su, 2017; Guimarães, et al., 
2017), forestry (Zarco-Tejada, et al., 2014; Chianucci, et al., 2016), agriculture 
(Bendig, et al., 2015; Gago, et al., 2015; Santesteban, et al., 2017; Romero-Trigueros, 
et al., 2017), and disaster management (Niethammer, et al., 2012). In particular, 
Bendig, et al. (2015) indicated that NDVI is useful for biomass monitoring of barley, 
and shows positive correlation related to water stress for agriculture (Gago, et al., 
2015). Based on the above reviews, a linear regression model between calculated 
NDVI and observed soil moisture is established for soil moisture mapping. 
Additionally, a correlation between precipitation and soil moisture is also discussed in 
this paper. 
 
2. Study Site and Soil Moisture Examination 
 
Figure 1 shows the true color image of the study site, which covers approximately 
100,000 m2. In the study site, the land use includes agriculture, forest, water body, 
and path. On January 15, 2017, February 15, 2017, April 8, 2017, and May 4, 2017, at 
a total of twelve sampling points soil moisture was examined at two depths: 10 and 20 
cm. The examination results are shown in Table 1. 
 
Wang, et al. (2007) investigated the influence of soil moisture at different depths on 
NDVI and indicated that NDVI has a strong correlation with the water stress of 
vegetation. NDVI is also related to ground temperature varying with precipitation 
(Schnur, et al., 2010). At present, Table 1 cannot show a significant correlation 
between depth and soil moisture, but along with the accumulated sampling points, the 
correlation is still worth future discussion.   
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Figure 1: True color image of study site. 
 

3. Unmanned Aerial Remote Sensing System (UARSS) 
 
3.1 Unmanned Aerial Vehicle (UAV) and Flying Control System 
 
A UAV with four rotor wings was chosen to carry the multispectral sensor (see Figure 
2). The technical features of the UARSS include four 1.2 mega pixels sensors (near-
infrared (NIR), red-edge (RE), red (R), and green (G)), as well as one 16 mega pixels 
RGB sensor (see Figure 3), ground resolution at 190 m of 0.2 cm/pixel, distance 
between two flying strips of approximately 65 m, image pitch of 256 × 192 m2, and 
end and side laps of 80% and 70%, respectively. The weather conditions, including 
visibility of 7000 m and cloud level of 3000 m, are also required. 
 
Figure 4 shows an interface of the flying control system. Orientation, height, speed, 
and camera station can be instantaneously displayed on the interface, so global 
position system (GPS) and inertial measurement unit (IMU) are the two critical 
devices in the UARSS. Before implementing a flight task, the schemed flying strips 
must be input into the flying control system. During the flight task, the UAV can be 
precisely directed forward along the schemed flying strips, and the flying control 
system can automatically press the shutters at the correct camera stations (see Figure 
5).   
 
3.2 Multispectral Sensor and Image Data 
 
For a unique scene, the multispectral sensor, shown as Figure 3, can offer four gray-
level images in the channels, i.e. G (0.550 µm), R (0.660 µm), RE (0.735µm), and 
NIR (0.790 µm), and a RGB image. Both of the RE and NIR channels belong to the 
invisible spectrums. RE is a narrow channel between R and NIR, so RE is effective in 
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discriminating vegetation against non-vegetation. The study site was imaged on 
December 8, 2016, February 17, 2017, April 7, 2017, and May 5, 2017. Figure 6 
shows the multi-temporal false color images of the study site. Because the 
multispectral sensor has the RE and NIR channels, two kinds of false color images 
can be obtained. 
 

Table 1: Soil moisture examination of sampling in situ. 

Sampling date 
Coordinate system: 
GCS_TWD_1997 Depth (cm) Soil moisture 

(%) ID N E 

January 15, 2017 

1 2707927 190091 10 11.86 
20 13.57 

2 2707927 190089 10 21.73 
20 18.17 

3 2707906 190111 10 5.36 
20 5.30 

February 15, 2017 
4 2707946 190093 10 13.17 

20 14.92 

5 2707904 190113 10 3.45 
20 3.35 

April 8, 2017 

6 2708014 190084 10 6.48  
20 7.28  

7 2707967 189996 10 18.89  
20 17.91  

8 2707968 190064 10 13.25  
20 32.12  

May 4, 2017 

9 2707947 190091 10 17.19  
20 12.51  

10 2707952 190047 10 12.91  
20 11.81  

11 2707999 190046 10 11.97  
20 14.56  

12 2708011 190074 10 11.67  
20 14.98  

 
4. Methodology 
 
4.1 Calculation of NDVI 
 
In each monitoring task, the study site will obtain two false color images (see Figure 
6). Thus, the following two NDVIs are presented in this paper: 
 

NDVI_1 = (NIR - R) / (NIR + R),      (1) 
 

NDVI_2 = (RE - R) / (RE + R).      (2) 
 
NDVI being equal to 1 means that the R channel has no spectral response; on the 
contrary, if either the NIR or RE channel has no spectral response, NDVI is equal to -
1. Thus, NDVI ranges between -1 (not good vegetation) and 1 (good vegetation).  



 

 
Figure 2: UAV with four rotor wings. 

 
Figure 3: Multispectral sensor. 

 
Figure 4: Flying control system. 

 
Figure 5: Flying strips and camera 

stations. 
 

    

    
Figure 6: False color images of the study site; (a) through (d) Images 

consisting of channel 1: NIR, channel 2: R, and channel 3: G; (e) through (h) 
Images consisting of channel 1: RE, channel 2: R, and channel 3: G. 

 
4.2 Empirical model 
 
Vegetation status usually is related to soil moisture of the root zone (Alvarez-
Garreton, et al., 2015; Laiolo, et al., 2016); precipitation-runoff and land uses also 
influence soil the moisture of the root-zone (Renzullo, et al., 2014). In this research, a 
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linear regression model between NDVI and soil moisture is introduced. Referring to 
the linear model of Wang, et al. (2007), the empirical model for soil moisture 
mapping is represented as: 
 

          Y = a · X + b,        (3) 
 

      a = (X’X)-1X’Y,       (4) 
 

               Ý = X · a,        (5) 
 

where X, Y, a, and b signify NDVI, soil moisture, constant, and random error, 
respectively. Estimated soil moisture (Ý) can be explained by NDVI (X) according to 
a square of Pearson correlation coefficient. 

 
5. Preliminary Results and Discussion 
 
5.1 NDVI calculation 
 
Based on the false color images in Figure 6, the NDVIs of the study site are calculated 
and shown as Figure 7. The statistics of the NDVIs in Figure 7 are shown as the 
histograms in Figure 8. Compared with the statistical histograms of NDVI_1 and 
NDVI_2, the statistical histograms have similar patterns and the approximate NDVI 
ranges. The NDVI ranges in late 2016 and early 2017 both were -0.4 ~ 0.4. Based on 
NDVI_1, the standard deviation for the statistical histograms in the period of 
December 2016 through April 2017 was slightly increased from 0.026 to 0.039 but 
reduced to 0.027 in May 2017. Based on NDVI_2, however, there is a steady standard 
deviation of approximately 0.027 for the statistical histograms in the period of 
December 2016 through May 2017. The above result demonstrates that the NIR and 
RE channels have similar performance in NDVI calculation. Moreover, NDVI_1 has 
the better capacity than NDVI_2 for detecting slight difference of vegetation biomass.  
 
Due to the growth of the wheat, the gray levels of the agricultural field in early 2017 
are obviously brighter than those in late 2016 (see Figure 7). However, the forest had 
darker gray levels in early 2017 than in late 2016. Compared with Figures 8(a) and (b), 
there is the more number of pixels with the NDVIs between 0.2 and 0.4 in early 2017 
than in late 2016. This result demonstrates that the growth of the wheat leaded to an 
increase of the number of pixels with the above positive NDVIs. On the contrary, a 
decrease of the forest biomass resulted in the increase of the number of pixels with the 
negative NDVIs between -0.2 and -0.4. After April 2017, the wheat was reaped so 
that the agricultural field displayed bare soil. Figures 8(b) through (d) are seen that the 
number of pixels with the positive NDVIs after April 2017 is significantly less than in 
February 2017. 
 
Figure 9 shows the monthly precipitation from November 2016 to May 2017; it can 
be conjectured that the darker gray levels of the forest in early 2017 are related to the 
precipitation. The monthly precipitation suddenly dropped from 123.1mm in 
November 2016 to 28mm in December 2016. Whereas the precipitation in February 
2017 is greatly increased, the growth of the forest is healthier after than before 
February 2017. Thus, the soil moisture of the forest also should be increased after 
February 2017. Theoretically an increased precipitation will induce an increase of 



 

vegetation biomass to raise NDVIs, but the vegetation biomass in the agricultural 
field is additionally controlled by farming that hampers this study to establish a robust 
correlation between NDVI and soil moisture.  
 

    

    
Figure 7: NDVI calculation results; (a) through (d) NDVI_1; (e) through (h) NDVI_2. 
 

    

    
Figure 8: Statistical histograms corresponding to Figure 7. 

 

 
Figure 9: Monthly precipitation. 
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Table 2: NDVI calculation results of in situ sampling points. 
Date of UARSS imaging ID of sampling in situ NDVI_1 NDVI_2 

December 8, 2016 
1 -0.1173 -0.0642 
2 -0.1256 -0.0601 
3 -0.0017 0.0059 

February 17, 2017 4 -0.3132  -0.2414  
5 -0.0373  -0.0049  

April 7, 2017 
6 -0.0513  -0.0289  
7 -0.1099  -0.0940  
8 0.0794  0.0749  

May 5, 2017 

9 0.1730  0.1610  
10 0.0203  0.0298  
11 0.0306  0.0364  
12 -0.1232  -0.1072  

 
5.2 Empirical Model Establishment 
 
Table 2 lists the NDVI calculation results for the in situ sampling points. Based on 
Tables 1 and 2, the empirical models’ correlations between NDVI and soil moisture 
are established, as shown in Figure 10. So far there is not a significant correlation 
between the NDVIs and the soil moisture. Nevertheless, Figures 10(a) and (c) show 
the negative correlation between NDVI and soil moisture that is contrary to the 
expected positive correlation. It is evident that some of the sampling points, i.e. the 
IDs of 1 through 3, have a temporal gap of approximately one month between the 
UARSS imaging and the measurement in situ. Theoretically, a higher NDVI should 
reflect higher soil moisture strengthening vegetation biomass, but the correlation 
between NDVI and soil moisture is negative; this may result from the temporal gap or 
the positioning precision limit of 5 m of our handheld GPS. Considering the 
positioning precision limit, an NDVI in Table 2 is derived by averaging the NDVIs in 
an area of 5 × 5 m2. In the averaged NDVI, the NDVIs of land uses of non-vegetation, 
such as bare soil, are also probably involved, so in Table 2 some of the averaged 
NDVIs are negative. In spite of that, currently the sampling size of soil moisture 
examination is too small to identify the precise correlation between NDVI and soil 
moisture. Long-term monitoring of soil moisture is still needed in this research. 
 
Due to the negative correlations in Figures 10(a) and (c), the observed soil moistures 
at the shallow depth cannot be reasonably explained by the calculated NDVIs. The 
obtained empirical models in Figures 10(a) and (c) are abandoned in the next stage of 
soil moisture mapping. Between Figures 10(b) and (d), NDVI_2 compared to 
NDVI_1 has the better explanation for the observed soil moistures at the deep depth. 
In other words, the RE channel, where the channel width is about 0.01 µm, is more 
useful than the NIR channel, where the channel width is about 0.03~0.04 µm, in the 
establishment of the empirical model. Also, the RE channel should be more sensitive 
than the NIR one in soil moisture detection. 
 
5.3 Soil Moisture Mapping 
 
According to the linear models shown as Figures 10(b) and (d), the mapping results 
for the soil moistures at the depth of 20 cm are shown as Figures 11 and 12.  



 

  

  
Figure 10: Empirical models; (a) and (b) show the models between NDVI_1 and soil 

moisture at the depths of 10 and 20 centimeters, respectively; (c) and (d) show the 
models between NDVI_2 and soil moisture at the depths of 10 and 20 centimeters, 

respectively. 
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Figure 11: Using the empirical model of Y = 3.1281X + 14.024 for soil moisture 
mapping at the depth of 20 cm. 

 

  

  
Figure 12: Using the empirical model of Y = 19.716X + 14.432 for soil moisture 

mapping at the depth of 20 cm. 
 
The soil moisture mapping in Figure 11 is produced by the empirical model of Y = 
3.1281X + 14.024. In December 2016, the estimated soil moistures in the agricultural 
field are approximately between 13 and 14%. Along with the growth of the wheat, the 
soil moistures mostly between 15 and 16% are estimated for the agricultural field in 
February 2017. In April or May 2017, the estimated soil moistures in the agricultural 
field drop back between 13 and 14%. However, the drop of the estimated soil 
moistures results from the radiometric reflectance decrease of the NIR channel due to 
the reaped wheat. The estimation precision for the agricultural field still needs to be 
surveyed in the future. As for the forest, the variation of the estimated soil moistures 
is just contrary to that of the agricultural field. In December 2016, the estimated soil 
moistures in the forest are approximately between 14 and 15%. Along with the 
decrease of the precipitation, the estimated soil moistures are also slightly decreased 
in February 2017. In April or May 2017, the estimated soil moistures in the forest 
approximately reach to 15%. 
 
The variation tendency of the estimated soil moistures in Figure 12 is similar to that in 
Figure 11. Nevertheless, the soil moisture mapping has the better contrast in Figure 12 
than in Figure 11 because the RE channel should be more sensitive than the NIR one 
in soil moisture detection. In conclusion the above results of soil moisture mapping 
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demonstrate that climate factor, such as precipitation, could influence soil moisture. 
However, human activity, such as farming, would hamper soil moisture estimation.  
 
6. Conclusion 
 
This paper presents a UARSS technique and discusses the influences of precipitation, 
soil depth, and invisible channels on soil moisture mapping. The UARSS 
demonstrated its potential for establishing the correlation between precipitation and 
soil moisture. The current size of sampling in situ, and the remote sensing data are 
still insufficient, but some preliminary results have been obtained in this paper. Firstly, 
NDVI is calculated based on the spectral channels of R, RE, and NIR of Parrot 
Sequoia, and demonstrated its effectiveness in soil moisture mapping. Moreover, RE 
compared with NIR can establish a better empirical model between NDVI and soil 
moisture. Secondly, precipitation and human activity both would impact soil moisture, 
and NDVI offers a good explanation for soil moisture at deep depth. At present, the 
obtained correlation between NDVI and soil moisture at shallow depth is negative, 
which is contrary to the hypothesis of positive correlation. In the future, the 
correlation between NDVI and soil moisture still needs to be correctly identified, and 
an estimation accuracy of soil moisture mapping also needs to be surveyed. 
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