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Abstract 
Offshore wind energy is a fast growing technology within the marine energy sector. In 
contrast to onshore, offshore wind farms require larger installation and incur higher 
O&M costs due to the challenges of the marine environment. In this context condition 
monitoring systems have an important role to play in reducing maintenance costs.  
 
The high initial cost of condition monitoring systems motivates this analysis of the 
cost effectiveness of such technology O&M cost data are commercially sensitive and 
generally protected by the wind industry, especially for offshore operations. 
Component failure rates are essential for modelling wind turbine O&M costs but very 
little offshore failure rate data available in the public domain.  
 
With cooperation of the operator of the largest onshore wind farm in the UK and that 
of a large Swedish offshore wind farm, three years of operational data records have 
been made available for this research. With wind and wave parameters extracted from 
the database and set as inputs to a cost model is has been possible to compare the 
O&M cost of reactive maintenance with condition based maintenance. The cost model 
available uses empirical failure rate based on onshore data and so will not fully 
represent the offshore situation as failure rates are expected to affected by offshore 
operational conditions. To overcome this limitation, a mathematical translation of 
failure rate from onshore to offshore is applied to the operational data. The way this 
translation is calculated is sensitive to the way the relevant probability distributions 
are represented and improved curve fitting approaches have been explored.  
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Introduction 
 
Driven by the Kyoto Protocol to the United Nations Framework Convention on 
Climate Change (UNFCCC), adopted in Kyoto, Japan on 11th December 1997 and 
entered into force on 16th February 2005, the European Union (EU) in 2005 assigned 
an 8% CO2 reduction target for the year 2008 to 2012, and it is one of the few parties 
which have committed to further reductions for 2013-2020 with a 20% binding figure.  
(United Nations, 2014) The United Kingdom, as one of the member country in EU, 
has exceeded the initial target, ending up with 12.5% reduction for 2008-2012. The 
UK has also assigned further 19% reduction for the next 8 year run. Much of this 
success has been due to the rapid growth of wind energy, and in recent years much of 
this has been offshore. In 2014, 16.9GW of new power generating capacity was 
installed in the EU, with wind power having the largest share with 11.8GW, 
accounting for 43.7% of all energy installed, followed with Solar PV of 8GW 
accounting for 29.7%. These two renewable energy generation methods account for 
73.4% of the entire annual installed power capacity, as shown in Figure 1. Since 2000, 
the annual renewable capacity additions have been 24.7-34.6GW, 8-10 times higher 
than what was in 2000. The net growth of European wind power since the year 2000 
is 116.8GW (EWEA, 2015)  
 
The high quality of the offshore wind resource together with a reduced sensitivity 
from a public planning perspective accounts for the present political support for 
offshore wind development. 2,488 turbines are now installed offshore and grid 
connected, making a cumulative total of 8,045.3MW in 74 wind farms in 11 European 
countries. A further 2.9GW of capacity will be added when 12 on-going projects 
complete. This will bring the cumulative capacity in Europe to 10.9GW. Nearly half 
of the final investment decisions in 2014 were billion-euro projects. The industry 
raised €3.14 billion of non-recourse debt in 2014, which was the highest level in its 
history. The UK has the largest amount of installed offshore wind capacity with 
4.5GW, counting for 55.9% of European installations, as shown in Figure 2. 
 

 
 

Figure 1: share of new power capacity installations in EU (MW), (EWEA, 2015) 



 

 
 

Figure 2: Installed Cumulative Capacity by country in the EU (MW), (EWEA, 2015) 
 
Compared to onshore, offshore wind has the advantage of generally higher mean wind 
speed, less temporal variation and lower turbulence.   In addition there is a reduced 
negative impact on the landscape and noise is a less critical issue. On the other hand, 
some of these advantages come at a cost. The low disturbence to human population is 
the result of a substantial distance between the offshore wind farm and shoreline 
where the port of operation and maintenance (O&M) centre is located. The marine 
conditions restricts access for maintenance which depend on the prevailing wind and 
wave conditions. This characteristic of offshore wind farm operations motivates the 
interest in condition monitoring. 
 
Compared to reactive maintainence, condition based maintenance is based on data 
providing the real time condition of the certain turbine subsystems or components. 
The O&M team can arrange the maintainence considering both component condition 
and vessel access. In this way, major failures of the turbine can often be 
circumvented; at the same time, the cost of maintainece should reduce due to a more 
effective maintenance regime.  
 
For quantifing the cost effectiveness of O&M, and condition monitoring in particular, 
failure rate is a key input. However, offshore component failure rate data is not 
publically available as it has been commercially protected by manufacturers and 
operators. This results in failure rate data in the public domain being very limited, 
especially for offshore. Three years of operational data records have been made 
available for this research through bi-lateral research agreements.The onshore data 
come from the largest British onshore wind farm, and the offshore data come from a 
large Swedish offshore wind farm. This enables the translation of componet failure 
rates from onshore to offshore. The translation considers the ambient conditions in 
terms of wind speed and temperature.  
 



 

Failure rate translation 
 
The failure rate translation allows calculation of offshore failure rates from onshore 
data. The core calculation is for the ratio of the expectation of the failure rate, 
offshore to onshore. The expectation of the failure rate is dependent on the prevailing 
environment. As described in the introduction, the most relevant environmental 
factors are the wind speed and the temperature. Therefore the wind speed and 
temperature time series data are taken from both on and offshore sites. 
 
This is not to say that there are no other factors that influence failure rate, but if that 
data was available it could be included in a similar manner, e.g. for wind turbulence.  
For the results presented here, the relationships between failure rate and the selected 
environmental factors have been obtained based on analysis of data from the UK 
onshore wind farm covering 3 years of operation. The probability distributions of 
wind speed and temperature are derived from both on and offshore data. The ratio of 
expected failure rates on/offshore can be derived for wind speed and temperature, 
separately. 
 
Failure rate probability 
 
The wind turbine component failure rate probability is an important element in the 
expectation calculation. According to Bayes’ rule  (Laplace, 1814), the probability of 
failure rate dependent on weather condition,  P(F|W), is calculated from the product of 
the probability of weather condition given failure rate, P(W|F), and the annual mean 
failure rate of the selected turbine component, P(F), divided by the weather parameter 
distribution, P(W).  
 
 
 
The probability of weather condition given failure rate is the information which can 
be directly obtained from failure record of the wind turbine operational data, where 
the failure type, location, date and the corresponding weather statistics are recorded. It 
is important to note that the value used for wind speed and ambient temperature is the 
daily mean value since it is accepted that the impact of the environment on failure will 
not be instantaneous. One day may well be insufficient and in future work, longer 
averaging periods will be investigated. 
 
Fitting a suitable function to the failure probability distribution 
 
The common approach to estimate curves for the probability density function (PDF) is  
by using a non-parametric estimate of the density function, such as the Kernel 
function (Epanechnikov, 1969). Although these fitted distributions look reasonable, as 
in Figure 3, the tails are not at all precise and this is a problem because for high and 
low values (in this case of wind speed), P(W|F) is determined by a ratio of the tails of 
two PDFs.  
 

      (1) 



 

 
Figure 3. Failure rate histogram and normalized probability Kernel distribution of an 
onshore drive train system 
 
Because of the limited size of the database, it is difficult to derive smooth and reliable 
probability distributions. Unexpected spikes occur in the distribution curves which 
only reflect the data limitations and are not generic. In order to obtain a smoother 
distribution curve, a procedure of finding a fit to the cumulative probability 
distribution (CPD) of P(W|F) and then differentiating the result to regain the desired 
probability distribution function has been applied in this research.  
 
The first fitting function for the CPD in this example is a 2nd order polynomial 
function. The 2nd order polynomial function has suitable characteristics for of the 
ascending curve with a flexible tangent.  It provides reasonable fitting to the data and 
is easy to differentiate. The disadvantage is that the curve extends (extrapolates) at the 
two ends with high-value tangents, which creates significant error in the fitting of the 
tails to the original curve. This error will have exaggerated impact when 
differentiation is applied. 
 
An alternative fitting function is the exponential. The most observable nature of the 
CPD curve is the asymptotic ends towards 0 and 1. The exponential function can be 
derived to reflect this and this makes the fitting of the tails much more reliable. The 
disadvantage of exponential fitting is the complexity of the function itself, which 
increases the difficulty of parameter estimation. The accuracy of the exponential 
function to the target curve is also slightly lower than for the polynomial function. 
Once obtained from the fitting function, the parameters allow algebraic differentiation 
of the CPD function to give the required PDF function.  
 
Wind speed distribution fit 
 
Figure 4 shows the staircase curve of the CPD dependent on wind speed (blue) with 
the fitting curves (red and green). The red line shows the exponential function fit, and 
green dashed line represents the 2nd order polynomial fit. In this figure, the two fitted 
functions show good agreement with the main body of the staircase CPD curve. 
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Figure 4: Staircase plot of CPD fitted by 2nd polynomial and exponential function of 
rotor system in an onshore wind turbine dependent on wind speed 
 
The parameters obtained from the fitting function are substituted into the expression 
for P(W|F). The failure rate probability function P(F|W) is then calculated based on 
the Bayes’ rule (equation 1). Figure 5 compares the curves from the fitting methods 
with the original directly obtained failure rate probability function curve. The upper 
plot presents the non-fitted curve, where a lump at the high wind speed is shown. This 
lump is likely the result of the limited data record and does not reflect an actual 
functional relationship. The middle plot shows the P(F|W) calculated from the 
exponential fitted P(W|F). It retains the basic shape of the long term distribution but 
avoids the fluctuations in short term. The lower plot presents the P(F|W) calculated 
from the 2nd polynomial fitted P(W|F). Because of the issues concerned with any 
extrapolation using the 2nd polynomial function, as stated above, the curve is only 
calculated within the two vertical bars, which reflect the low and high wind speed 
values in the original data. In the absence of any other indication, constant value 
extrapolation has been used outside these limits. 
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Figure 5: Failure rate PDF with an onshore rotor system non-fitted (upper), 
exponential fitting function (middle) and 2nd order polynomial fitting function 
(lower) dependent on wind speed 
 
Temperature distribution fit 
 
The situation for temperature is slightly different. Unlike wind speed, temperature can 
have a negative value. This is an obstacle to fitting an exponential function to the 
temperature distribution because of the non-negative-x-value nature of the 
exponential function. The curves are offset to the right-hand side of the y axis, fit with 
exponential functions, and shifted back. In this way, the parameters are obtained in 
the offset stage and put in the PDF calculation.  



 

Figure 6 shows an example of the staircase curve of the CPD dependent on 
temperature (blue) with the fitting curves (red and green). In this figure, the 2nd order 
polynomial (green dashed) shows a high-value tangent at the high temperature values. 
This can be observed at the right hand side of the curve. 
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Figure 6: Staircase plot of CPD fitted by 2nd polynomial and exponential function for 
an onshore wind turbine blade system dependent on temperature 
 
Figure 7 (left) shows the failure rate probability function P(F|W) based on the Bayes’ 
rule. This figure clearly shows the high-tangent nature of the 2nd polynomial function 
(green dashed line). The high-temperature tail expands far above 1, which of course is 
not allowed for probability function plot. Ignoring the illogical tails and zooming in 
on the middle range of temperatures, as shown in the right hand figure, the three 
methods can be observed agreeing each other to a certain extent. The non-fitted 
method shows a peak in failure rate at around -4 degree, in some agreement with the 
2nd order polynomial method but with a much higher fluctuation; whereas the 
exponential method shows a peak at around 5-10 degrees. It is not possible to confirm 
which method is closer to the reality due to a lack of data.  
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Figure 7: Failure rate PDF with an onshore rotor system non-fitted, exponential fitting 
function and 2nd order polynomial fitting function dependent on temperature (left) 
and zoomed-in figure (right) 
 



Cost model 

The cost model used in this research is based on statistical analysis of O&M 
(Feuchtwang & Infield, 2013) specifically for offshore wind. The purpose of the 
development of this cost model is to access offshore wind turbine maintenance by 
calculating access probabilities, expected delays and the associated costs using a 
probabilistic approach. Failure rate of each turbine subsystem is an important input of 
the cost model. The accuracy of the failure rate directly affects the accuracy of the 
cost estimation. The final output of the cost model is annual maintenance cost.  

This cost model is compared with other four cost models: the ECUME model from 
EDF; the NOWIcob model from SINTEF Energy; the UiS model from the Univeristy 
of Stavanger; and the OPEX model from CDT, University of Strathclyde (Dinwoodie 
& Endrerud, 2015). The comparison uses the same input of a virtual offshore wind 
farm 45km off the coast of Germany with 8 years of wind and wave data. In this way, 
the results from the different methods can be compared.  

Results 

The subsystem failure rates translated from onshore to offshore are listed in 
Table 1 for  the three different fitting methods. The failure rate results are substituted 
into the cost model. The results of the cost model are shown in Table 2, among which 
the annual O&M costs are compared with other cost models. Figure 8 shows the 
comparison in one chart. It shows that the exponential fitted failure rate provides the 
closest cost results to the other models. The non-fitted and 2nd-polynomial-fitted 
failure rate has a higher value for the O&M cost. 



Table 1: failure rate translation from onshore to offshore for the selected subsystems 

RatioWindSpeed 
RatioTemperatur
e 

offshore failure 
rate 

code 

onshor
e 
failure 
rate 

failure
R% 

Nonf
itted 

Poly
2Fitt
ed 

ExpF
itted 

Nonf
itted 

Poly
2Fitt
ed 

ExpF
itted 

Nonf
itted 

Poly
2Fitt
ed 

Exp
Fitte
d 

Generator 
Assembly27 0.78 7.20% 0.92 0.74 0.63 1.69 0.74 0.52 1.208 0.424 

0.25
5 

Gearbox Assembly14 0.56 5.10% 1.00 1.33 0.94 1.04 1.84 1.40 0.579 1.367 
0.73
4 

Blades9 0.16 1.50% 1.00 1.01 0.82 1.22 1.06 0.78 0.193 0.170 
0.10
2 

Pitch System11 2.32 
21.30
% 0.87 0.79 0.69 1.26 1.53 0.89 2.551 2.813 

1.42
5 

Yaw System18 1.23 
11.30
% 1.27 0.92 1.04 1.04 2.34 0.88 1.616 2.648 

1.13
5 

Rotor Other8 0.01 0.10% 0.94 0.84 0.79 1.25 0.69 1.19 0.008 0.004 
0.00
7 

Control & Comms 
Other 0.05 0.50% 1.26 1.18 1.17 0.95 1.74 1.21 0.061 0.105 

0.07
2 

Mechanical Brake15 0.05 0.50% 0.96 0.60 0.74 0.77 3.50 1.18 
0.03
7 

0.10
8 

0.04
5 

High Speed Shaft 
transmi 0.05 0.40% 1.58 1.00 0.95 0.81 3.54 2.49 0.057 0.159 

0.10
7 

Main Shaft13 0.03 0.30% 0.90 0.70 0.69 1.26 0.77 1.44 0.036 0.017 
0.03
2 

Hydraulic System23 0.13 1.20% 1.09 0.84 0.87 1.46 0.93 0.59 0.206 0.102 
0.06
7 

Tower33 0.29 2.70% 1.10 1.28 0.96 0.82 1.34 0.89 0.262 0.499 
0.24
9 



Table 2: cost model output with comparison of different methods 

downtime 31.8 days 33.5 days 23.4 days
availability 91.3% 90.8% 93.6%

capacity0factor0with0downtime Cfd 45.6% 45.3% 46.9%
energy0lost Estot 1273.4 MWh 1344.7 MWh 938.1 MWh

mean0power0generated0over0year0with0downtime Pmd 1.37 MW 1.36 MW 1.41 MW
total0annual0energy0generated0with0downtime Ead 11976.8 MWh 11905.5 MWh 12312.2 MWh

annual0revenue0with0downtime Rad 1077.9 £k 1071.5 £k 1108.1 £k
revenue0lost srev 114.6 £k 121.0 £k 84.4 £k

annual0maintenance0cost ftot 454.1 £k 505.2 £k 343.1 £k
entire0wind0farm0annual0maintenance0cost 36.3 £m 40.4 £m 27.4 £m

vessel0cost AperAunit £0.025 /kWh £0.026 /kWh £0.018 /kWh
wage0cost0 AperAunit £0.0016 /kWh £0.0018 /kWh £0.0012 /kWh

component0cost0 AperAunit £0.0109 /kWh £0.0146 /kWh £0.0089 /kWh
Total0O&M0cost00(w/o0revenue0loss) AperAunit £0.0379 /kWh £0.0424 /kWh £0.0279 /kWh

revenue0lost0 AperAunit £0.0096 /kWh £0.0102 /kWh £0.0069 /kWh
TotalAO&MAcostAA(withArevenueAloss) AperAunit £0.0475 /kWh £0.0526 /kWh £0.0347 /kWh
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Figure 8: Annual O&M costs for the cost models with different methods 



Conclusion 

This paper presents an initial analysis that attempts to estimate failure rates for 
offshore wind turbines based on the onshore values. It applies correction factors 
dependent on wind speed and temperature to the failure occurrence in the cost model 
calculation. The correction factors are calculated by comparing the failure rate 
expectations from on and offshore wind farms. The failure rate probabilities obey 
Bayes’ rule, and a range of fitting functions are applied in an attempt to obtain the 
probability density functions. The failure PDF is derived from the CPD in order to get 
a more realistic result. 2nd order polynomial and exponential function are proved to 
fit the failure rate function in order to give a smoother and more generic function. The 
fitting functions together with the non-fitted method are used to derive the final costs, 
and compared with other cost models in the research domain. The comparison of the 
final O&M costs suggests the exponential fitting method has the closest result with 
other cost models. However, no final evidence shows which method is the closest to 
the reality because of the lack of long term failure data in the operational domain. 

In future work, the cost model will be applied to assess how the use of condition 
monitoring systems might reduce offshore wind O&M costs, and how these depend 
on the characteristics of the offshore sites. 
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